# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/gfl_head.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Normal, Constant from ppdet.core.workspace import register from ppdet.modeling.layers import ConvNormLayer from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance, batch_distance2bbox from ppdet.data.transform.atss_assigner import bbox_overlaps class ScaleReg(nn.Layer): """ Parameter for scaling the regression outputs. """ def __init__(self): super(ScaleReg, self).__init__() self.scale_reg = self.create_parameter( shape=[1], attr=ParamAttr(initializer=Constant(value=1.)), dtype="float32") def forward(self, inputs): out = inputs * self.scale_reg return out class Integral(nn.Layer): """A fixed layer for calculating integral result from distribution. This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, P(y_i) denotes the softmax vector that represents the discrete distribution y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} Args: reg_max (int): The maximal value of the discrete set. Default: 16. You may want to reset it according to your new dataset or related settings. """ def __init__(self, reg_max=16): super(Integral, self).__init__() self.reg_max = reg_max self.register_buffer('project', paddle.linspace(0, self.reg_max, self.reg_max + 1)) def forward(self, x): """Forward feature from the regression head to get integral result of bounding box location. Args: x (Tensor): Features of the regression head, shape (N, 4*(n+1)), n is self.reg_max. Returns: x (Tensor): Integral result of box locations, i.e., distance offsets from the box center in four directions, shape (N, 4). """ x = F.softmax(x.reshape([-1, self.reg_max + 1]), axis=1) x = F.linear(x, self.project) if self.training: x = x.reshape([-1, 4]) return x @register class DGQP(nn.Layer): """Distribution-Guided Quality Predictor of GFocal head Args: reg_topk (int): top-k statistics of distribution to guide LQE reg_channels (int): hidden layer unit to generate LQE add_mean (bool): Whether to calculate the mean of top-k statistics """ def __init__(self, reg_topk=4, reg_channels=64, add_mean=True): super(DGQP, self).__init__() self.reg_topk = reg_topk self.reg_channels = reg_channels self.add_mean = add_mean self.total_dim = reg_topk if add_mean: self.total_dim += 1 self.reg_conv1 = self.add_sublayer( 'dgqp_reg_conv1', nn.Conv2D( in_channels=4 * self.total_dim, out_channels=self.reg_channels, kernel_size=1, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.01)), bias_attr=ParamAttr(initializer=Constant(value=0)))) self.reg_conv2 = self.add_sublayer( 'dgqp_reg_conv2', nn.Conv2D( in_channels=self.reg_channels, out_channels=1, kernel_size=1, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.01)), bias_attr=ParamAttr(initializer=Constant(value=0)))) def forward(self, x): """Forward feature from the regression head to get integral result of bounding box location. Args: x (Tensor): Features of the regression head, shape (N, 4*(n+1)), n is self.reg_max. Returns: x (Tensor): Integral result of box locations, i.e., distance offsets from the box center in four directions, shape (N, 4). """ N, _, H, W = x.shape[:] prob = F.softmax(x.reshape([N, 4, -1, H, W]), axis=2) prob_topk, _ = prob.topk(self.reg_topk, axis=2) if self.add_mean: stat = paddle.concat( [prob_topk, prob_topk.mean( axis=2, keepdim=True)], axis=2) else: stat = prob_topk y = F.relu(self.reg_conv1(stat.reshape([N, -1, H, W]))) y = F.sigmoid(self.reg_conv2(y)) return y @register class GFLHead(nn.Layer): """ GFLHead Args: conv_feat (object): Instance of 'FCOSFeat' num_classes (int): Number of classes fpn_stride (list): The stride of each FPN Layer prior_prob (float): Used to set the bias init for the class prediction layer loss_class (object): Instance of QualityFocalLoss. loss_dfl (object): Instance of DistributionFocalLoss. loss_bbox (object): Instance of bbox loss. reg_max: Max value of integral set :math: `{0, ..., reg_max}` n QFL setting. Default: 16. """ __inject__ = [ 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox', 'nms' ] __shared__ = ['num_classes'] def __init__(self, conv_feat='FCOSFeat', dgqp_module=None, num_classes=80, fpn_stride=[8, 16, 32, 64, 128], prior_prob=0.01, loss_class='QualityFocalLoss', loss_dfl='DistributionFocalLoss', loss_bbox='GIoULoss', reg_max=16, feat_in_chan=256, nms=None, nms_pre=1000, cell_offset=0): super(GFLHead, self).__init__() self.conv_feat = conv_feat self.dgqp_module = dgqp_module self.num_classes = num_classes self.fpn_stride = fpn_stride self.prior_prob = prior_prob self.loss_qfl = loss_class self.loss_dfl = loss_dfl self.loss_bbox = loss_bbox self.reg_max = reg_max self.feat_in_chan = feat_in_chan self.nms = nms self.nms_pre = nms_pre self.cell_offset = cell_offset self.use_sigmoid = self.loss_qfl.use_sigmoid if self.use_sigmoid: self.cls_out_channels = self.num_classes else: self.cls_out_channels = self.num_classes + 1 conv_cls_name = "gfl_head_cls" bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob) self.gfl_head_cls = self.add_sublayer( conv_cls_name, nn.Conv2D( in_channels=self.feat_in_chan, out_channels=self.cls_out_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.01)), bias_attr=ParamAttr( initializer=Constant(value=bias_init_value)))) conv_reg_name = "gfl_head_reg" self.gfl_head_reg = self.add_sublayer( conv_reg_name, nn.Conv2D( in_channels=self.feat_in_chan, out_channels=4 * (self.reg_max + 1), kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.01)), bias_attr=ParamAttr(initializer=Constant(value=0)))) self.scales_regs = [] for i in range(len(self.fpn_stride)): lvl = int(math.log(int(self.fpn_stride[i]), 2)) feat_name = 'p{}_feat'.format(lvl) scale_reg = self.add_sublayer(feat_name, ScaleReg()) self.scales_regs.append(scale_reg) self.distribution_project = Integral(self.reg_max) def forward(self, fpn_feats): assert len(fpn_feats) == len( self.fpn_stride ), "The size of fpn_feats is not equal to size of fpn_stride" cls_logits_list = [] bboxes_reg_list = [] for stride, scale_reg, fpn_feat in zip(self.fpn_stride, self.scales_regs, fpn_feats): conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat) cls_score = self.gfl_head_cls(conv_cls_feat) bbox_pred = scale_reg(self.gfl_head_reg(conv_reg_feat)) if self.dgqp_module: quality_score = self.dgqp_module(bbox_pred) cls_score = F.sigmoid(cls_score) * quality_score if not self.training: cls_score = F.sigmoid(cls_score.transpose([0, 2, 3, 1])) bbox_pred = bbox_pred.transpose([0, 2, 3, 1]) b, cell_h, cell_w, _ = paddle.shape(cls_score) y, x = self.get_single_level_center_point( [cell_h, cell_w], stride, cell_offset=self.cell_offset) center_points = paddle.stack([x, y], axis=-1) cls_score = cls_score.reshape([b, -1, self.cls_out_channels]) bbox_pred = self.distribution_project(bbox_pred) * stride bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4]) # NOTE: If keep_ratio=False and image shape value that # multiples of 32, distance2bbox not set max_shapes parameter # to speed up model prediction. If need to set max_shapes, # please use inputs['im_shape']. bbox_pred = batch_distance2bbox( center_points, bbox_pred, max_shapes=None) cls_logits_list.append(cls_score) bboxes_reg_list.append(bbox_pred) return (cls_logits_list, bboxes_reg_list) def _images_to_levels(self, target, num_level_anchors): """ Convert targets by image to targets by feature level. """ level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(target[:, start:end].squeeze(0)) start = end return level_targets def _grid_cells_to_center(self, grid_cells): """ Get center location of each gird cell Args: grid_cells: grid cells of a feature map Returns: center points """ cells_cx = (grid_cells[:, 2] + grid_cells[:, 0]) / 2 cells_cy = (grid_cells[:, 3] + grid_cells[:, 1]) / 2 return paddle.stack([cells_cx, cells_cy], axis=-1) def get_loss(self, gfl_head_outs, gt_meta): cls_logits, bboxes_reg = gfl_head_outs num_level_anchors = [ featmap.shape[-2] * featmap.shape[-1] for featmap in cls_logits ] grid_cells_list = self._images_to_levels(gt_meta['grid_cells'], num_level_anchors) labels_list = self._images_to_levels(gt_meta['labels'], num_level_anchors) label_weights_list = self._images_to_levels(gt_meta['label_weights'], num_level_anchors) bbox_targets_list = self._images_to_levels(gt_meta['bbox_targets'], num_level_anchors) num_total_pos = sum(gt_meta['pos_num']) try: num_total_pos = paddle.distributed.all_reduce(num_total_pos.clone( )) / paddle.distributed.get_world_size() except: num_total_pos = max(num_total_pos, 1) loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], [] for cls_score, bbox_pred, grid_cells, labels, label_weights, bbox_targets, stride in zip( cls_logits, bboxes_reg, grid_cells_list, labels_list, label_weights_list, bbox_targets_list, self.fpn_stride): grid_cells = grid_cells.reshape([-1, 4]) cls_score = cls_score.transpose([0, 2, 3, 1]).reshape( [-1, self.cls_out_channels]) bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape( [-1, 4 * (self.reg_max + 1)]) bbox_targets = bbox_targets.reshape([-1, 4]) labels = labels.reshape([-1]) label_weights = label_weights.reshape([-1]) bg_class_ind = self.num_classes pos_inds = paddle.nonzero( paddle.logical_and((labels >= 0), (labels < bg_class_ind)), as_tuple=False).squeeze(1) score = np.zeros(labels.shape) if len(pos_inds) > 0: pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0) pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0) pos_grid_cells = paddle.gather(grid_cells, pos_inds, axis=0) pos_grid_cell_centers = self._grid_cells_to_center( pos_grid_cells) / stride weight_targets = F.sigmoid(cls_score.detach()) weight_targets = paddle.gather( weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0) pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred) pos_decode_bbox_pred = distance2bbox(pos_grid_cell_centers, pos_bbox_pred_corners) pos_decode_bbox_targets = pos_bbox_targets / stride bbox_iou = bbox_overlaps( pos_decode_bbox_pred.detach().numpy(), pos_decode_bbox_targets.detach().numpy(), is_aligned=True) score[pos_inds.numpy()] = bbox_iou pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1]) target_corners = bbox2distance(pos_grid_cell_centers, pos_decode_bbox_targets, self.reg_max).reshape([-1]) # regression loss loss_bbox = paddle.sum( self.loss_bbox(pos_decode_bbox_pred, pos_decode_bbox_targets) * weight_targets) # dfl loss loss_dfl = self.loss_dfl( pred_corners, target_corners, weight=weight_targets.expand([-1, 4]).reshape([-1]), avg_factor=4.0) else: loss_bbox = bbox_pred.sum() * 0 loss_dfl = bbox_pred.sum() * 0 weight_targets = paddle.to_tensor([0], dtype='float32') # qfl loss score = paddle.to_tensor(score) loss_qfl = self.loss_qfl( cls_score, (labels, score), weight=label_weights, avg_factor=num_total_pos) loss_bbox_list.append(loss_bbox) loss_dfl_list.append(loss_dfl) loss_qfl_list.append(loss_qfl) avg_factor.append(weight_targets.sum()) avg_factor = sum(avg_factor) try: avg_factor = paddle.distributed.all_reduce(avg_factor.clone()) avg_factor = paddle.clip( avg_factor / paddle.distributed.get_world_size(), min=1) except: avg_factor = max(avg_factor.item(), 1) if avg_factor <= 0: loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) loss_bbox = paddle.to_tensor( 0, dtype='float32', stop_gradient=False) loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) else: losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list)) losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list)) loss_qfl = sum(loss_qfl_list) loss_bbox = sum(losses_bbox) loss_dfl = sum(losses_dfl) loss_states = dict( loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl) return loss_states def get_single_level_center_point(self, featmap_size, stride, cell_offset=0): """ Generate pixel centers of a single stage feature map. Args: featmap_size: height and width of the feature map stride: down sample stride of the feature map Returns: y and x of the center points """ h, w = featmap_size x_range = (paddle.arange(w, dtype='float32') + cell_offset) * stride y_range = (paddle.arange(h, dtype='float32') + cell_offset) * stride y, x = paddle.meshgrid(y_range, x_range) y = y.flatten() x = x.flatten() return y, x def post_process(self, gfl_head_outs, im_shape, scale_factor): cls_scores, bboxes_reg = gfl_head_outs bboxes = paddle.concat(bboxes_reg, axis=1) # rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale] im_scale = scale_factor.flip([1]).tile([1, 2]).unsqueeze(1) bboxes /= im_scale mlvl_scores = paddle.concat(cls_scores, axis=1) mlvl_scores = mlvl_scores.transpose([0, 2, 1]) bbox_pred, bbox_num, _ = self.nms(bboxes, mlvl_scores) return bbox_pred, bbox_num