# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import Constant, Uniform from ppdet.core.workspace import register from ppdet.modeling.losses import CTFocalLoss, GIoULoss class ConvLayer(nn.Layer): def __init__(self, ch_in, ch_out, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False): super(ConvLayer, self).__init__() bias_attr = False fan_in = ch_in * kernel_size**2 bound = 1 / math.sqrt(fan_in) param_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound)) if bias: bias_attr = paddle.ParamAttr(initializer=Constant(0.)) self.conv = nn.Conv2D( in_channels=ch_in, out_channels=ch_out, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, weight_attr=param_attr, bias_attr=bias_attr) def forward(self, inputs): out = self.conv(inputs) return out @register class CenterNetHead(nn.Layer): """ Args: in_channels (int): the channel number of input to CenterNetHead. num_classes (int): the number of classes, 80 (COCO dataset) by default. head_planes (int): the channel number in all head, 256 by default. heatmap_weight (float): the weight of heatmap loss, 1 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default size_weight (float): the weight of box size loss, 0.1 by default. size_loss (): the type of size regression loss, 'L1 loss' by default. offset_weight (float): the weight of center offset loss, 1 by default. iou_weight (float): the weight of iou head loss, 0 by default. """ __shared__ = ['num_classes'] def __init__(self, in_channels, num_classes=80, head_planes=256, heatmap_weight=1, regress_ltrb=True, size_weight=0.1, size_loss='L1', offset_weight=1, iou_weight=0): super(CenterNetHead, self).__init__() self.regress_ltrb = regress_ltrb self.weights = { 'heatmap': heatmap_weight, 'size': size_weight, 'offset': offset_weight, 'iou': iou_weight } # heatmap head self.heatmap = nn.Sequential( ConvLayer( in_channels, head_planes, kernel_size=3, padding=1, bias=True), nn.ReLU(), ConvLayer( head_planes, num_classes, kernel_size=1, stride=1, padding=0, bias=True)) with paddle.no_grad(): self.heatmap[2].conv.bias[:] = -2.19 # size(ltrb or wh) head self.size = nn.Sequential( ConvLayer( in_channels, head_planes, kernel_size=3, padding=1, bias=True), nn.ReLU(), ConvLayer( head_planes, 4 if regress_ltrb else 2, kernel_size=1, stride=1, padding=0, bias=True)) self.size_loss = size_loss # offset head self.offset = nn.Sequential( ConvLayer( in_channels, head_planes, kernel_size=3, padding=1, bias=True), nn.ReLU(), ConvLayer( head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True)) # iou head (optinal) if iou_weight > 0: self.iou = nn.Sequential( ConvLayer( in_channels, head_planes, kernel_size=3, padding=1, bias=True), nn.ReLU(), ConvLayer( head_planes, 4 if regress_ltrb else 2, kernel_size=1, stride=1, padding=0, bias=True)) @classmethod def from_config(cls, cfg, input_shape): if isinstance(input_shape, (list, tuple)): input_shape = input_shape[0] return {'in_channels': input_shape.channels} def forward(self, feat, inputs): heatmap = self.heatmap(feat) size = self.size(feat) offset = self.offset(feat) iou = self.iou(feat) if hasattr(self, 'iou_weight') else None if self.training: loss = self.get_loss( inputs, self.weights, heatmap, size, offset, iou=iou) return loss else: heatmap = F.sigmoid(heatmap) head_outs = {'heatmap': heatmap, 'size': size, 'offset': offset} if iou is not None: head_outs.update({'iou': iou}) return head_outs def get_loss(self, inputs, weights, heatmap, size, offset, iou=None): # heatmap head loss: CTFocalLoss heatmap_target = inputs['heatmap'] heatmap = paddle.clip(F.sigmoid(heatmap), 1e-4, 1 - 1e-4) ctfocal_loss = CTFocalLoss() heatmap_loss = ctfocal_loss(heatmap, heatmap_target) # size head loss: L1 loss or GIoU loss index = inputs['index'] mask = inputs['index_mask'] size = paddle.transpose(size, perm=[0, 2, 3, 1]) size_n, size_h, size_w, size_c = size.shape size = paddle.reshape(size, shape=[size_n, -1, size_c]) index = paddle.unsqueeze(index, 2) batch_inds = list() for i in range(size_n): batch_ind = paddle.full( shape=[1, index.shape[1], 1], fill_value=i, dtype='int64') batch_inds.append(batch_ind) batch_inds = paddle.concat(batch_inds, axis=0) index = paddle.concat(x=[batch_inds, index], axis=2) pos_size = paddle.gather_nd(size, index=index) mask = paddle.unsqueeze(mask, axis=2) size_mask = paddle.expand_as(mask, pos_size) size_mask = paddle.cast(size_mask, dtype=pos_size.dtype) pos_num = size_mask.sum() size_mask.stop_gradient = True if self.size_loss == 'L1': if self.regress_ltrb: size_target = inputs['size'] # shape: [bs, max_per_img, 4] else: if inputs['size'].shape[-1] == 2: # inputs['size'] is wh, and regress as wh # shape: [bs, max_per_img, 2] size_target = inputs['size'] else: # inputs['size'] is ltrb, but regress as wh # shape: [bs, max_per_img, 4] size_target = inputs['size'][:, :, 0:2] + inputs['size'][:, :, 2:] size_target.stop_gradient = True size_loss = F.l1_loss( pos_size * size_mask, size_target * size_mask, reduction='sum') size_loss = size_loss / (pos_num + 1e-4) elif self.size_loss == 'giou': size_target = inputs['bbox_xys'] size_target.stop_gradient = True centers_x = (size_target[:, :, 0:1] + size_target[:, :, 2:3]) / 2.0 centers_y = (size_target[:, :, 1:2] + size_target[:, :, 3:4]) / 2.0 x1 = centers_x - pos_size[:, :, 0:1] y1 = centers_y - pos_size[:, :, 1:2] x2 = centers_x + pos_size[:, :, 2:3] y2 = centers_y + pos_size[:, :, 3:4] pred_boxes = paddle.concat([x1, y1, x2, y2], axis=-1) giou_loss = GIoULoss(reduction='sum') size_loss = giou_loss( pred_boxes * size_mask, size_target * size_mask, iou_weight=size_mask, loc_reweight=None) size_loss = size_loss / (pos_num + 1e-4) # offset head loss: L1 loss offset_target = inputs['offset'] offset = paddle.transpose(offset, perm=[0, 2, 3, 1]) offset_n, offset_h, offset_w, offset_c = offset.shape offset = paddle.reshape(offset, shape=[offset_n, -1, offset_c]) pos_offset = paddle.gather_nd(offset, index=index) offset_mask = paddle.expand_as(mask, pos_offset) offset_mask = paddle.cast(offset_mask, dtype=pos_offset.dtype) pos_num = offset_mask.sum() offset_mask.stop_gradient = True offset_target.stop_gradient = True offset_loss = F.l1_loss( pos_offset * offset_mask, offset_target * offset_mask, reduction='sum') offset_loss = offset_loss / (pos_num + 1e-4) # iou head loss: GIoU loss if iou is not None: iou = paddle.transpose(iou, perm=[0, 2, 3, 1]) iou_n, iou_h, iou_w, iou_c = iou.shape iou = paddle.reshape(iou, shape=[iou_n, -1, iou_c]) pos_iou = paddle.gather_nd(iou, index=index) iou_mask = paddle.expand_as(mask, pos_iou) iou_mask = paddle.cast(iou_mask, dtype=pos_iou.dtype) pos_num = iou_mask.sum() iou_mask.stop_gradient = True gt_bbox_xys = inputs['bbox_xys'] gt_bbox_xys.stop_gradient = True centers_x = (gt_bbox_xys[:, :, 0:1] + gt_bbox_xys[:, :, 2:3]) / 2.0 centers_y = (gt_bbox_xys[:, :, 1:2] + gt_bbox_xys[:, :, 3:4]) / 2.0 x1 = centers_x - pos_size[:, :, 0:1] y1 = centers_y - pos_size[:, :, 1:2] x2 = centers_x + pos_size[:, :, 2:3] y2 = centers_y + pos_size[:, :, 3:4] pred_boxes = paddle.concat([x1, y1, x2, y2], axis=-1) giou_loss = GIoULoss(reduction='sum') iou_loss = giou_loss( pred_boxes * iou_mask, gt_bbox_xys * iou_mask, iou_weight=iou_mask, loc_reweight=None) iou_loss = iou_loss / (pos_num + 1e-4) losses = { 'heatmap_loss': heatmap_loss, 'size_loss': size_loss, 'offset_loss': offset_loss, } det_loss = weights['heatmap'] * heatmap_loss + weights[ 'size'] * size_loss + weights['offset'] * offset_loss if iou is not None: losses.update({'iou_loss': iou_loss}) det_loss = det_loss + weights['iou'] * iou_loss losses.update({'det_loss': det_loss}) return losses