# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import numpy as np def bbox2delta(src_boxes, tgt_boxes, weights): src_w = src_boxes[:, 2] - src_boxes[:, 0] src_h = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_w src_ctr_y = src_boxes[:, 1] + 0.5 * src_h tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0] tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1] tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h wx, wy, ww, wh = weights dx = wx * (tgt_ctr_x - src_ctr_x) / src_w dy = wy * (tgt_ctr_y - src_ctr_y) / src_h dw = ww * paddle.log(tgt_w / src_w) dh = wh * paddle.log(tgt_h / src_h) deltas = paddle.stack((dx, dy, dw, dh), axis=1) return deltas def delta2bbox(deltas, boxes, weights): clip_scale = math.log(1000.0 / 16) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into paddle.exp() dw = paddle.clip(dw, max=clip_scale) dh = paddle.clip(dh, max=clip_scale) pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1) pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1) pred_w = paddle.exp(dw) * widths.unsqueeze(1) pred_h = paddle.exp(dh) * heights.unsqueeze(1) pred_boxes = [] pred_boxes.append(pred_ctr_x - 0.5 * pred_w) pred_boxes.append(pred_ctr_y - 0.5 * pred_h) pred_boxes.append(pred_ctr_x + 0.5 * pred_w) pred_boxes.append(pred_ctr_y + 0.5 * pred_h) pred_boxes = paddle.stack(pred_boxes, axis=-1) return pred_boxes def expand_bbox(bboxes, scale): w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5 h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5 x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5 y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5 w_half *= scale h_half *= scale bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32) bboxes_exp[:, 0] = x_c - w_half bboxes_exp[:, 2] = x_c + w_half bboxes_exp[:, 1] = y_c - h_half bboxes_exp[:, 3] = y_c + h_half return bboxes_exp def clip_bbox(boxes, im_shape): h, w = im_shape[0], im_shape[1] x1 = boxes[:, 0].clip(0, w) y1 = boxes[:, 1].clip(0, h) x2 = boxes[:, 2].clip(0, w) y2 = boxes[:, 3].clip(0, h) return paddle.stack([x1, y1, x2, y2], axis=1) def nonempty_bbox(boxes, min_size=0, return_mask=False): w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] mask = paddle.logical_and(h > min_size, w > min_size) if return_mask: return mask keep = paddle.nonzero(mask).flatten() return keep def bbox_area(boxes): return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def bbox_overlaps(boxes1, boxes2): """ Calculate overlaps between boxes1 and boxes2 Args: boxes1 (Tensor): boxes with shape [M, 4] boxes2 (Tensor): boxes with shape [N, 4] Return: overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N] """ M = boxes1.shape[0] N = boxes2.shape[0] if M * N == 0: return paddle.zeros([M, N], dtype='float32') area1 = bbox_area(boxes1) area2 = bbox_area(boxes2) xy_max = paddle.minimum( paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:]) xy_min = paddle.maximum( paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2]) width_height = xy_max - xy_min width_height = width_height.clip(min=0) inter = width_height.prod(axis=2) overlaps = paddle.where(inter > 0, inter / (paddle.unsqueeze(area1, 1) + area2 - inter), paddle.zeros_like(inter)) return overlaps def batch_bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6): """Calculate overlap between two set of bboxes. If ``is_aligned `` is ``False``, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2. Args: bboxes1 (Tensor): shape (B, m, 4) in format or empty. bboxes2 (Tensor): shape (B, n, 4) in format or empty. B indicates the batch dim, in shape (B1, B2, ..., Bn). If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union) or "iof" (intersection over foreground). is_aligned (bool, optional): If True, then m and n must be equal. Default False. eps (float, optional): A value added to the denominator for numerical stability. Default 1e-6. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode) # Either the boxes are empty or the length of boxes's last dimenstion is 4 assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0) assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0) # Batch dim must be the same # Batch dim: (B1, B2, ... Bn) assert bboxes1.shape[:-2] == bboxes2.shape[:-2] batch_shape = bboxes1.shape[:-2] rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0 cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0 if is_aligned: assert rows == cols if rows * cols == 0: if is_aligned: return paddle.full(batch_shape + (rows, ), 1) else: return paddle.full(batch_shape + (rows, cols), 1) area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1]) area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1]) if is_aligned: lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2]) # [B, rows, 2] rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:]) # [B, rows, 2] wh = (rb - lt).clip(min=0) # [B, rows, 2] overlap = wh[:, 0] * wh[:, 1] if mode in ['iou', 'giou']: union = area1 + area2 - overlap else: union = area1 if mode == 'giou': enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2]) enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:]) else: lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]), bboxes2[:, :2]) # [B, rows, cols, 2] rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]), bboxes2[:, 2:]) # [B, rows, cols, 2] wh = (rb - lt).clip(min=0) # [B, rows, cols, 2] overlap = wh[:, :, 0] * wh[:, :, 1] if mode in ['iou', 'giou']: union = area1.reshape([rows,1]) \ + area2.reshape([1,cols]) - overlap else: union = area1[:, None] if mode == 'giou': enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]), bboxes2[:, :2]) enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]), bboxes2[:, 2:]) eps = paddle.to_tensor([eps]) union = paddle.maximum(union, eps) ious = overlap / union if mode in ['iou', 'iof']: return ious # calculate gious enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0) enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1] enclose_area = paddle.maximum(enclose_area, eps) gious = ious - (enclose_area - union) / enclose_area return 1 - gious def xywh2xyxy(box): x, y, w, h = box x1 = x - w * 0.5 y1 = y - h * 0.5 x2 = x + w * 0.5 y2 = y + h * 0.5 return [x1, y1, x2, y2] def make_grid(h, w, dtype): yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)]) return paddle.stack((xv, yv), 2).cast(dtype=dtype) def decode_yolo(box, anchor, downsample_ratio): """decode yolo box Args: box (list): [x, y, w, h], all have the shape [b, na, h, w, 1] anchor (list): anchor with the shape [na, 2] downsample_ratio (int): downsample ratio, default 32 scale (float): scale, default 1. Return: box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1] """ x, y, w, h = box na, grid_h, grid_w = x.shape[1:4] grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2)) x1 = (x + grid[:, :, :, :, 0:1]) / grid_w y1 = (y + grid[:, :, :, :, 1:2]) / grid_h anchor = paddle.to_tensor(anchor) anchor = paddle.cast(anchor, x.dtype) anchor = anchor.reshape((1, na, 1, 1, 2)) w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w) h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h) return [x1, y1, w1, h1] def iou_similarity(box1, box2, eps=1e-9): """Calculate iou of box1 and box2 Args: box1 (Tensor): box with the shape [N, M1, 4] box2 (Tensor): box with the shape [N, M2, 4] Return: iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2] """ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] x1y1 = paddle.maximum(px1y1, gx1y1) x2y2 = paddle.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9): """calculate the iou of box1 and box2 Args: box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] giou (bool): whether use giou or not, default False diou (bool): whether use diou or not, default False ciou (bool): whether use ciou or not, default False eps (float): epsilon to avoid divide by zero Return: iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1] """ px1, py1, px2, py2 = box1 gx1, gy1, gx2, gy2 = box2 x1 = paddle.maximum(px1, gx1) y1 = paddle.maximum(py1, gy1) x2 = paddle.minimum(px2, gx2) y2 = paddle.minimum(py2, gy2) overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0)) area1 = (px2 - px1) * (py2 - py1) area1 = area1.clip(0) area2 = (gx2 - gx1) * (gy2 - gy1) area2 = area2.clip(0) union = area1 + area2 - overlap + eps iou = overlap / union if giou or ciou or diou: # convex w, h cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1) ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1) if giou: c_area = cw * ch + eps return iou - (c_area - union) / c_area else: # convex diagonal squared c2 = cw**2 + ch**2 + eps # center distance rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4 if diou: return iou - rho2 / c2 else: w1, h1 = px2 - px1, py2 - py1 + eps w2, h2 = gx2 - gx1, gy2 - gy1 + eps delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2) v = (4 / math.pi**2) * paddle.pow(delta, 2) alpha = v / (1 + eps - iou + v) alpha.stop_gradient = True return iou - (rho2 / c2 + v * alpha) else: return iou def rect2rbox(bboxes): """ :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax) :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle) """ bboxes = bboxes.reshape(-1, 4) num_boxes = bboxes.shape[0] x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0 y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0 edges1 = np.abs(bboxes[:, 2] - bboxes[:, 0]) edges2 = np.abs(bboxes[:, 3] - bboxes[:, 1]) angles = np.zeros([num_boxes], dtype=bboxes.dtype) inds = edges1 < edges2 rboxes = np.stack((x_ctr, y_ctr, edges1, edges2, angles), axis=1) rboxes[inds, 2] = edges2[inds] rboxes[inds, 3] = edges1[inds] rboxes[inds, 4] = np.pi / 2.0 return rboxes def delta2rbox(rrois, deltas, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1], wh_ratio_clip=1e-6): """ :param rrois: (cx, cy, w, h, theta) :param deltas: (dx, dy, dw, dh, dtheta) :param means: :param stds: :param wh_ratio_clip: :return: """ means = paddle.to_tensor(means) stds = paddle.to_tensor(stds) deltas = paddle.reshape(deltas, [-1, deltas.shape[-1]]) denorm_deltas = deltas * stds + means dx = denorm_deltas[:, 0] dy = denorm_deltas[:, 1] dw = denorm_deltas[:, 2] dh = denorm_deltas[:, 3] dangle = denorm_deltas[:, 4] max_ratio = np.abs(np.log(wh_ratio_clip)) dw = paddle.clip(dw, min=-max_ratio, max=max_ratio) dh = paddle.clip(dh, min=-max_ratio, max=max_ratio) rroi_x = rrois[:, 0] rroi_y = rrois[:, 1] rroi_w = rrois[:, 2] rroi_h = rrois[:, 3] rroi_angle = rrois[:, 4] gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin( rroi_angle) + rroi_x gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos( rroi_angle) + rroi_y gw = rroi_w * dw.exp() gh = rroi_h * dh.exp() ga = np.pi * dangle + rroi_angle ga = (ga + np.pi / 4) % np.pi - np.pi / 4 ga = paddle.to_tensor(ga) gw = paddle.to_tensor(gw, dtype='float32') gh = paddle.to_tensor(gh, dtype='float32') bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1) return bboxes def rbox2delta(proposals, gt, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]): """ Args: proposals: gt: means: 1x5 stds: 1x5 Returns: """ proposals = proposals.astype(np.float64) PI = np.pi gt_widths = gt[..., 2] gt_heights = gt[..., 3] gt_angle = gt[..., 4] proposals_widths = proposals[..., 2] proposals_heights = proposals[..., 3] proposals_angle = proposals[..., 4] coord = gt[..., 0:2] - proposals[..., 0:2] dx = (np.cos(proposals[..., 4]) * coord[..., 0] + np.sin(proposals[..., 4]) * coord[..., 1]) / proposals_widths dy = (-np.sin(proposals[..., 4]) * coord[..., 0] + np.cos(proposals[..., 4]) * coord[..., 1]) / proposals_heights dw = np.log(gt_widths / proposals_widths) dh = np.log(gt_heights / proposals_heights) da = (gt_angle - proposals_angle) da = (da + PI / 4) % PI - PI / 4 da /= PI deltas = np.stack([dx, dy, dw, dh, da], axis=-1) means = np.array(means, dtype=deltas.dtype) stds = np.array(stds, dtype=deltas.dtype) deltas = (deltas - means) / stds deltas = deltas.astype(np.float32) return deltas def bbox_decode(bbox_preds, anchors, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]): """decode bbox from deltas Args: bbox_preds: [N,H,W,5] anchors: [H*W,5] return: bboxes: [N,H,W,5] """ means = paddle.to_tensor(means) stds = paddle.to_tensor(stds) num_imgs, H, W, _ = bbox_preds.shape bboxes_list = [] for img_id in range(num_imgs): bbox_pred = bbox_preds[img_id] # bbox_pred.shape=[5,H,W] bbox_delta = bbox_pred anchors = paddle.to_tensor(anchors) bboxes = delta2rbox( anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6) bboxes = paddle.reshape(bboxes, [H, W, 5]) bboxes_list.append(bboxes) return paddle.stack(bboxes_list, axis=0) def poly2rbox(polys): """ poly:[x0,y0,x1,y1,x2,y2,x3,y3] to rotated_boxes:[x_ctr,y_ctr,w,h,angle] """ rotated_boxes = [] for poly in polys: poly = np.array(poly[:8], dtype=np.float32) pt1 = (poly[0], poly[1]) pt2 = (poly[2], poly[3]) pt3 = (poly[4], poly[5]) pt4 = (poly[6], poly[7]) edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[ 1]) * (pt1[1] - pt2[1])) edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[ 1]) * (pt2[1] - pt3[1])) width = max(edge1, edge2) height = min(edge1, edge2) rbox_angle = 0 if edge1 > edge2: rbox_angle = np.arctan2( float(pt2[1] - pt1[1]), float(pt2[0] - pt1[0])) elif edge2 >= edge1: rbox_angle = np.arctan2( float(pt4[1] - pt1[1]), float(pt4[0] - pt1[0])) def norm_angle(angle, range=[-np.pi / 4, np.pi]): return (angle - range[0]) % range[1] + range[0] rbox_angle = norm_angle(rbox_angle) x_ctr = float(pt1[0] + pt3[0]) / 2 y_ctr = float(pt1[1] + pt3[1]) / 2 rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle]) rotated_boxes.append(rotated_box) ret_rotated_boxes = np.array(rotated_boxes) assert ret_rotated_boxes.shape[1] == 5 return ret_rotated_boxes def cal_line_length(point1, point2): import math return math.sqrt( math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2)) def get_best_begin_point_single(coordinate): x1, y1, x2, y2, x3, y3, x4, y4 = coordinate xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) xmax = max(x1, x2, x3, x4) ymax = max(y1, y2, y3, y4) combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]], [[x4, y4], [x1, y1], [x2, y2], [x3, y3]], [[x3, y3], [x4, y4], [x1, y1], [x2, y2]], [[x2, y2], [x3, y3], [x4, y4], [x1, y1]]] dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]] force = 100000000.0 force_flag = 0 for i in range(4): temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \ + cal_line_length(combinate[i][1], dst_coordinate[1]) \ + cal_line_length(combinate[i][2], dst_coordinate[2]) \ + cal_line_length(combinate[i][3], dst_coordinate[3]) if temp_force < force: force = temp_force force_flag = i if force_flag != 0: pass return np.array(combinate[force_flag]).reshape(8) def rbox2poly_np(rrects): """ rrect:[x_ctr,y_ctr,w,h,angle] to poly:[x0,y0,x1,y1,x2,y2,x3,y3] """ polys = [] for i in range(rrects.shape[0]): rrect = rrects[i] # x_ctr, y_ctr, width, height, angle = rrect[:5] x_ctr = rrect[0] y_ctr = rrect[1] width = rrect[2] height = rrect[3] angle = rrect[4] tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2 rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]]) R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) poly = R.dot(rect) x0, x1, x2, x3 = poly[0, :4] + x_ctr y0, y1, y2, y3 = poly[1, :4] + y_ctr poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32) poly = get_best_begin_point_single(poly) polys.append(poly) polys = np.array(polys) return polys def rbox2poly(rrects): """ rrect:[x_ctr,y_ctr,w,h,angle] to poly:[x0,y0,x1,y1,x2,y2,x3,y3] """ N = paddle.shape(rrects)[0] x_ctr = rrects[:, 0] y_ctr = rrects[:, 1] width = rrects[:, 2] height = rrects[:, 3] angle = rrects[:, 4] tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5 normal_rects = paddle.stack( [tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0) normal_rects = paddle.reshape(normal_rects, [2, 4, N]) normal_rects = paddle.transpose(normal_rects, [2, 0, 1]) sin, cos = paddle.sin(angle), paddle.cos(angle) # M.shape=[N,2,2] M = paddle.stack([cos, -sin, sin, cos], axis=0) M = paddle.reshape(M, [2, 2, N]) M = paddle.transpose(M, [2, 0, 1]) # polys:[N,8] polys = paddle.matmul(M, normal_rects) polys = paddle.transpose(polys, [2, 1, 0]) polys = paddle.reshape(polys, [-1, N]) polys = paddle.transpose(polys, [1, 0]) tmp = paddle.stack( [x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1) polys = polys + tmp return polys def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16): """ Calculate the iou of box1 and box2 with numpy. Args: box1 (ndarray): [N, 4] box2 (ndarray): [M, 4], usually N != M x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True eps (float): epsilon to avoid divide by zero Return: iou (ndarray): iou of box1 and box2, [N, M] """ N, M = len(box1), len(box2) # usually N != M if x1y1x2y2: b1_x1, b1_y1 = box1[:, 0], box1[:, 1] b1_x2, b1_y2 = box1[:, 2], box1[:, 3] b2_x1, b2_y1 = box2[:, 0], box2[:, 1] b2_x2, b2_y2 = box2[:, 2], box2[:, 3] else: # cxcywh style # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = np.zeros((N, M), dtype=np.float32) inter_rect_y1 = np.zeros((N, M), dtype=np.float32) inter_rect_x2 = np.zeros((N, M), dtype=np.float32) inter_rect_y2 = np.zeros((N, M), dtype=np.float32) for i in range(len(box2)): inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i]) inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i]) inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i]) inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i]) # Intersection area inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum( inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = np.repeat( ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1) b2_area = np.repeat( ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0) ious = inter_area / (b1_area + b2_area - inter_area + eps) return ious def bbox2distance(points, bbox, max_dis=None, eps=0.1): """Decode bounding box based on distances. Args: points (Tensor): Shape (n, 2), [x, y]. bbox (Tensor): Shape (n, 4), "xyxy" format max_dis (float): Upper bound of the distance. eps (float): a small value to ensure target < max_dis, instead <= Returns: Tensor: Decoded distances. """ left = points[:, 0] - bbox[:, 0] top = points[:, 1] - bbox[:, 1] right = bbox[:, 2] - points[:, 0] bottom = bbox[:, 3] - points[:, 1] if max_dis is not None: left = left.clip(min=0, max=max_dis - eps) top = top.clip(min=0, max=max_dis - eps) right = right.clip(min=0, max=max_dis - eps) bottom = bottom.clip(min=0, max=max_dis - eps) return paddle.stack([left, top, right, bottom], -1) def distance2bbox(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = x1.clip(min=0, max=max_shape[1]) y1 = y1.clip(min=0, max=max_shape[0]) x2 = x2.clip(min=0, max=max_shape[1]) y2 = y2.clip(min=0, max=max_shape[0]) return paddle.stack([x1, y1, x2, y2], -1) def bbox_center(boxes): """Get bbox centers from boxes. Args: boxes (Tensor): boxes with shape (..., 4), "xmin, ymin, xmax, ymax" format. Returns: Tensor: boxes centers with shape (..., 2), "cx, cy" format. """ boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2 boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2 return paddle.stack([boxes_cx, boxes_cy], axis=-1) def batch_distance2bbox(points, distance, max_shapes=None): """Decode distance prediction to bounding box for batch. Args: points (Tensor): [B, ..., 2], "xy" format distance (Tensor): [B, ..., 4], "ltrb" format max_shapes (Tensor): [B, 2], "h,w" format, Shape of the image. Returns: Tensor: Decoded bboxes, "x1y1x2y2" format. """ lt, rb = paddle.split(distance, 2, -1) # while tensor add parameters, parameters should be better placed on the second place x1y1 = -lt + points x2y2 = rb + points out_bbox = paddle.concat([x1y1, x2y2], -1) if max_shapes is not None: max_shapes = max_shapes.flip(-1).tile([1, 2]) delta_dim = out_bbox.ndim - max_shapes.ndim for _ in range(delta_dim): max_shapes.unsqueeze_(1) out_bbox = paddle.where(out_bbox < max_shapes, out_bbox, max_shapes) out_bbox = paddle.where(out_bbox > 0, out_bbox, paddle.zeros_like(out_bbox)) return out_bbox def delta2bbox_v2(rois, deltas, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=None, wh_ratio_clip=16.0 / 1000.0, ctr_clip=None): """Transform network output(delta) to bboxes. Based on https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/ bbox/coder/delta_xywh_bbox_coder.py Args: rois (Tensor): shape [..., 4], base bboxes, typical examples include anchor and rois deltas (Tensor): shape [..., 4], offset relative to base bboxes means (list[float]): the mean that was used to normalize deltas, must be of size 4 stds (list[float]): the std that was used to normalize deltas, must be of size 4 max_shape (list[float] or None): height and width of image, will be used to clip bboxes if not None wh_ratio_clip (float): to clip delta wh of decoded bboxes ctr_clip (float or None): whether to clip delta xy of decoded bboxes """ if rois.size == 0: return paddle.empty_like(rois) means = paddle.to_tensor(means) stds = paddle.to_tensor(stds) deltas = deltas * stds + means dxy = deltas[..., :2] dwh = deltas[..., 2:] pxy = (rois[..., :2] + rois[..., 2:]) * 0.5 pwh = rois[..., 2:] - rois[..., :2] dxy_wh = pwh * dxy max_ratio = np.abs(np.log(wh_ratio_clip)) if ctr_clip is not None: dxy_wh = paddle.clip(dxy_wh, max=ctr_clip, min=-ctr_clip) dwh = paddle.clip(dwh, max=max_ratio) else: dwh = dwh.clip(min=-max_ratio, max=max_ratio) gxy = pxy + dxy_wh gwh = pwh * dwh.exp() x1y1 = gxy - (gwh * 0.5) x2y2 = gxy + (gwh * 0.5) bboxes = paddle.concat([x1y1, x2y2], axis=-1) if max_shape is not None: bboxes[..., 0::2] = bboxes[..., 0::2].clip(min=0, max=max_shape[1]) bboxes[..., 1::2] = bboxes[..., 1::2].clip(min=0, max=max_shape[0]) return bboxes def bbox2delta_v2(src_boxes, tgt_boxes, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): """Encode bboxes to deltas. Modified from ppdet.modeling.bbox_utils.bbox2delta. Args: src_boxes (Tensor[..., 4]): base bboxes tgt_boxes (Tensor[..., 4]): target bboxes means (list[float]): the mean that will be used to normalize delta stds (list[float]): the std that will be used to normalize delta """ if src_boxes.size == 0: return paddle.empty_like(src_boxes) src_w = src_boxes[..., 2] - src_boxes[..., 0] src_h = src_boxes[..., 3] - src_boxes[..., 1] src_ctr_x = src_boxes[..., 0] + 0.5 * src_w src_ctr_y = src_boxes[..., 1] + 0.5 * src_h tgt_w = tgt_boxes[..., 2] - tgt_boxes[..., 0] tgt_h = tgt_boxes[..., 3] - tgt_boxes[..., 1] tgt_ctr_x = tgt_boxes[..., 0] + 0.5 * tgt_w tgt_ctr_y = tgt_boxes[..., 1] + 0.5 * tgt_h dx = (tgt_ctr_x - src_ctr_x) / src_w dy = (tgt_ctr_y - src_ctr_y) / src_h dw = paddle.log(tgt_w / src_w) dh = paddle.log(tgt_h / src_h) deltas = paddle.stack((dx, dy, dw, dh), axis=1) # [n, 4] means = paddle.to_tensor(means, place=src_boxes.place) stds = paddle.to_tensor(stds, place=src_boxes.place) deltas = (deltas - means) / stds return deltas