# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import AdaptiveAvgPool2D, Linear from paddle.nn.initializer import Uniform from ppdet.core.workspace import register, serializable from numbers import Integral from ..shape_spec import ShapeSpec from .mobilenet_v3 import make_divisible, ConvBNLayer __all__ = ['GhostNet'] class ExtraBlockDW(nn.Layer): def __init__(self, in_c, ch_1, ch_2, stride, lr_mult, conv_decay=0., norm_type='bn', norm_decay=0., freeze_norm=False, name=None): super(ExtraBlockDW, self).__init__() self.pointwise_conv = ConvBNLayer( in_c=in_c, out_c=ch_1, filter_size=1, stride=1, padding=0, act='relu6', lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_extra1") self.depthwise_conv = ConvBNLayer( in_c=ch_1, out_c=ch_2, filter_size=3, stride=stride, padding=1, # num_groups=int(ch_1), act='relu6', lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_extra2_dw") self.normal_conv = ConvBNLayer( in_c=ch_2, out_c=ch_2, filter_size=1, stride=1, padding=0, act='relu6', lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_extra2_sep") def forward(self, inputs): x = self.pointwise_conv(inputs) x = self.depthwise_conv(x) x = self.normal_conv(x) return x class SEBlock(nn.Layer): def __init__(self, num_channels, lr_mult, reduction_ratio=4, name=None): super(SEBlock, self).__init__() self.pool2d_gap = AdaptiveAvgPool2D(1) self._num_channels = num_channels stdv = 1.0 / math.sqrt(num_channels * 1.0) med_ch = num_channels // reduction_ratio self.squeeze = Linear( num_channels, med_ch, weight_attr=ParamAttr( learning_rate=lr_mult, initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(learning_rate=lr_mult)) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_channels, weight_attr=ParamAttr( learning_rate=lr_mult, initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(learning_rate=lr_mult)) def forward(self, inputs): pool = self.pool2d_gap(inputs) pool = paddle.squeeze(pool, axis=[2, 3]) squeeze = self.squeeze(pool) squeeze = F.relu(squeeze) excitation = self.excitation(squeeze) excitation = paddle.clip(x=excitation, min=0, max=1) excitation = paddle.unsqueeze(excitation, axis=[2, 3]) out = paddle.multiply(inputs, excitation) return out class GhostModule(nn.Layer): def __init__(self, in_channels, output_channels, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True, lr_mult=1., conv_decay=0., norm_type='bn', norm_decay=0., freeze_norm=False, name=None): super(GhostModule, self).__init__() init_channels = int(math.ceil(output_channels / ratio)) new_channels = int(init_channels * (ratio - 1)) self.primary_conv = ConvBNLayer( in_c=in_channels, out_c=init_channels, filter_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), num_groups=1, act="relu" if relu else None, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_primary_conv") self.cheap_operation = ConvBNLayer( in_c=init_channels, out_c=new_channels, filter_size=dw_size, stride=1, padding=int((dw_size - 1) // 2), num_groups=init_channels, act="relu" if relu else None, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_cheap_operation") def forward(self, inputs): x = self.primary_conv(inputs) y = self.cheap_operation(x) out = paddle.concat([x, y], axis=1) return out class GhostBottleneck(nn.Layer): def __init__(self, in_channels, hidden_dim, output_channels, kernel_size, stride, use_se, lr_mult, conv_decay=0., norm_type='bn', norm_decay=0., freeze_norm=False, return_list=False, name=None): super(GhostBottleneck, self).__init__() self._stride = stride self._use_se = use_se self._num_channels = in_channels self._output_channels = output_channels self.return_list = return_list self.ghost_module_1 = GhostModule( in_channels=in_channels, output_channels=hidden_dim, kernel_size=1, stride=1, relu=True, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_ghost_module_1") if stride == 2: self.depthwise_conv = ConvBNLayer( in_c=hidden_dim, out_c=hidden_dim, filter_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), num_groups=hidden_dim, act=None, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_depthwise_depthwise" # looks strange due to an old typo, will be fixed later. ) if use_se: self.se_block = SEBlock(hidden_dim, lr_mult, name=name + "_se") self.ghost_module_2 = GhostModule( in_channels=hidden_dim, output_channels=output_channels, kernel_size=1, relu=False, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_ghost_module_2") if stride != 1 or in_channels != output_channels: self.shortcut_depthwise = ConvBNLayer( in_c=in_channels, out_c=in_channels, filter_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), num_groups=in_channels, act=None, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later. ) self.shortcut_conv = ConvBNLayer( in_c=in_channels, out_c=output_channels, filter_size=1, stride=1, padding=0, num_groups=1, act=None, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + "_shortcut_conv") def forward(self, inputs): y = self.ghost_module_1(inputs) x = y if self._stride == 2: x = self.depthwise_conv(x) if self._use_se: x = self.se_block(x) x = self.ghost_module_2(x) if self._stride == 1 and self._num_channels == self._output_channels: shortcut = inputs else: shortcut = self.shortcut_depthwise(inputs) shortcut = self.shortcut_conv(shortcut) x = paddle.add(x=x, y=shortcut) if self.return_list: return [y, x] else: return x @register @serializable class GhostNet(nn.Layer): __shared__ = ['norm_type'] def __init__( self, scale=1.3, feature_maps=[6, 12, 15], with_extra_blocks=False, extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]], lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], conv_decay=0., norm_type='bn', norm_decay=0.0, freeze_norm=False): super(GhostNet, self).__init__() if isinstance(feature_maps, Integral): feature_maps = [feature_maps] if norm_type == 'sync_bn' and freeze_norm: raise ValueError( "The norm_type should not be sync_bn when freeze_norm is True") self.feature_maps = feature_maps self.with_extra_blocks = with_extra_blocks self.extra_block_filters = extra_block_filters inplanes = 16 self.cfgs = [ # k, t, c, SE, s [3, 16, 16, 0, 1], [3, 48, 24, 0, 2], [3, 72, 24, 0, 1], [5, 72, 40, 1, 2], [5, 120, 40, 1, 1], [3, 240, 80, 0, 2], [3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 1, 1], [3, 672, 112, 1, 1], [5, 672, 160, 1, 2], # SSDLite output [5, 960, 160, 0, 1], [5, 960, 160, 1, 1], [5, 960, 160, 0, 1], [5, 960, 160, 1, 1] ] self.scale = scale conv1_out_ch = int(make_divisible(inplanes * self.scale, 4)) self.conv1 = ConvBNLayer( in_c=3, out_c=conv1_out_ch, filter_size=3, stride=2, padding=1, num_groups=1, act="relu", lr_mult=1., conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name="conv1") # build inverted residual blocks self._out_channels = [] self.ghost_bottleneck_list = [] idx = 0 inplanes = conv1_out_ch for k, exp_size, c, use_se, s in self.cfgs: lr_idx = min(idx // 3, len(lr_mult_list) - 1) lr_mult = lr_mult_list[lr_idx] # for SSD/SSDLite, first head input is after ResidualUnit expand_conv return_list = self.with_extra_blocks and idx + 2 in self.feature_maps ghost_bottleneck = self.add_sublayer( "_ghostbottleneck_" + str(idx), sublayer=GhostBottleneck( in_channels=inplanes, hidden_dim=int(make_divisible(exp_size * self.scale, 4)), output_channels=int(make_divisible(c * self.scale, 4)), kernel_size=k, stride=s, use_se=use_se, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, return_list=return_list, name="_ghostbottleneck_" + str(idx))) self.ghost_bottleneck_list.append(ghost_bottleneck) inplanes = int(make_divisible(c * self.scale, 4)) idx += 1 self._update_out_channels( int(make_divisible(exp_size * self.scale, 4)) if return_list else inplanes, idx + 1, feature_maps) if self.with_extra_blocks: self.extra_block_list = [] extra_out_c = int(make_divisible(self.scale * self.cfgs[-1][1], 4)) lr_idx = min(idx // 3, len(lr_mult_list) - 1) lr_mult = lr_mult_list[lr_idx] conv_extra = self.add_sublayer( "conv" + str(idx + 2), sublayer=ConvBNLayer( in_c=inplanes, out_c=extra_out_c, filter_size=1, stride=1, padding=0, num_groups=1, act="relu6", lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name="conv" + str(idx + 2))) self.extra_block_list.append(conv_extra) idx += 1 self._update_out_channels(extra_out_c, idx + 1, feature_maps) for j, block_filter in enumerate(self.extra_block_filters): in_c = extra_out_c if j == 0 else self.extra_block_filters[j - 1][1] conv_extra = self.add_sublayer( "conv" + str(idx + 2), sublayer=ExtraBlockDW( in_c, block_filter[0], block_filter[1], stride=2, lr_mult=lr_mult, conv_decay=conv_decay, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, name='conv' + str(idx + 2))) self.extra_block_list.append(conv_extra) idx += 1 self._update_out_channels(block_filter[1], idx + 1, feature_maps) def _update_out_channels(self, channel, feature_idx, feature_maps): if feature_idx in feature_maps: self._out_channels.append(channel) def forward(self, inputs): x = self.conv1(inputs['image']) outs = [] for idx, ghost_bottleneck in enumerate(self.ghost_bottleneck_list): x = ghost_bottleneck(x) if idx + 2 in self.feature_maps: if isinstance(x, list): outs.append(x[0]) x = x[1] else: outs.append(x) if not self.with_extra_blocks: return outs for i, block in enumerate(self.extra_block_list): idx = i + len(self.ghost_bottleneck_list) x = block(x) if idx + 2 in self.feature_maps: outs.append(x) return outs @property def out_shape(self): return [ShapeSpec(channels=c) for c in self._out_channels]