# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['TOOD'] @register class TOOD(BaseArch): """ TOOD: Task-aligned One-stage Object Detection, see https://arxiv.org/abs/2108.07755 Args: backbone (nn.Layer): backbone instance neck (nn.Layer): 'FPN' instance head (nn.Layer): 'TOODHead' instance """ __category__ = 'architecture' def __init__(self, backbone, neck, head): super(TOOD, self).__init__() self.backbone = backbone self.neck = neck self.head = head @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) kwargs = {'input_shape': neck.out_shape} head = create(cfg['head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "head": head, } def _forward(self): body_feats = self.backbone(self.inputs) fpn_feats = self.neck(body_feats) head_outs = self.head(fpn_feats) if not self.training: bboxes, bbox_num = self.head.post_process( head_outs, self.inputs['im_shape'], self.inputs['scale_factor']) return bboxes, bbox_num else: loss = self.head.get_loss(head_outs, self.inputs) return loss def get_loss(self): return self._forward() def get_pred(self): bbox_pred, bbox_num = self._forward() output = {'bbox': bbox_pred, 'bbox_num': bbox_num} return output