# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['SOLOv2'] @register class SOLOv2(BaseArch): """ SOLOv2 network, see https://arxiv.org/abs/2003.10152 Args: backbone (object): an backbone instance solov2_head (object): an `SOLOv2Head` instance mask_head (object): an `SOLOv2MaskHead` instance neck (object): neck of network, such as feature pyramid network instance """ __category__ = 'architecture' def __init__(self, backbone, solov2_head, mask_head, neck=None): super(SOLOv2, self).__init__() self.backbone = backbone self.neck = neck self.solov2_head = solov2_head self.mask_head = mask_head @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) kwargs = {'input_shape': neck.out_shape} solov2_head = create(cfg['solov2_head'], **kwargs) mask_head = create(cfg['mask_head'], **kwargs) return { 'backbone': backbone, 'neck': neck, 'solov2_head': solov2_head, 'mask_head': mask_head, } def model_arch(self): body_feats = self.backbone(self.inputs) body_feats = self.neck(body_feats) self.seg_pred = self.mask_head(body_feats) self.cate_pred_list, self.kernel_pred_list = self.solov2_head( body_feats) def get_loss(self, ): loss = {} # get gt_ins_labels, gt_cate_labels, etc. gt_ins_labels, gt_cate_labels, gt_grid_orders = [], [], [] fg_num = self.inputs['fg_num'] for i in range(len(self.solov2_head.seg_num_grids)): ins_label = 'ins_label{}'.format(i) if ins_label in self.inputs: gt_ins_labels.append(self.inputs[ins_label]) cate_label = 'cate_label{}'.format(i) if cate_label in self.inputs: gt_cate_labels.append(self.inputs[cate_label]) grid_order = 'grid_order{}'.format(i) if grid_order in self.inputs: gt_grid_orders.append(self.inputs[grid_order]) loss_solov2 = self.solov2_head.get_loss( self.cate_pred_list, self.kernel_pred_list, self.seg_pred, gt_ins_labels, gt_cate_labels, gt_grid_orders, fg_num) loss.update(loss_solov2) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): seg_masks, cate_labels, cate_scores, bbox_num = self.solov2_head.get_prediction( self.cate_pred_list, self.kernel_pred_list, self.seg_pred, self.inputs['im_shape'], self.inputs['scale_factor']) outs = { "segm": seg_masks, "bbox_num": bbox_num, 'cate_label': cate_labels, 'cate_score': cate_scores } return outs