# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['S2ANet'] @register class S2ANet(BaseArch): __category__ = 'architecture' __inject__ = [ 's2anet_head', 's2anet_bbox_post_process', ] def __init__(self, backbone, neck, s2anet_head, s2anet_bbox_post_process): """ S2ANet, see https://arxiv.org/pdf/2008.09397.pdf Args: backbone (object): backbone instance neck (object): `FPN` instance s2anet_head (object): `S2ANetHead` instance s2anet_bbox_post_process (object): `S2ANetBBoxPostProcess` instance """ super(S2ANet, self).__init__() self.backbone = backbone self.neck = neck self.s2anet_head = s2anet_head self.s2anet_bbox_post_process = s2anet_bbox_post_process @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = cfg['neck'] and create(cfg['neck'], **kwargs) out_shape = neck and neck.out_shape or backbone.out_shape kwargs = {'input_shape': out_shape} s2anet_head = create(cfg['s2anet_head'], **kwargs) s2anet_bbox_post_process = create(cfg['s2anet_bbox_post_process'], **kwargs) return { 'backbone': backbone, 'neck': neck, "s2anet_head": s2anet_head, "s2anet_bbox_post_process": s2anet_bbox_post_process, } def _forward(self): body_feats = self.backbone(self.inputs) if self.neck is not None: body_feats = self.neck(body_feats) self.s2anet_head(body_feats) if self.training: loss = self.s2anet_head.get_loss(self.inputs) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss else: im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] nms_pre = self.s2anet_bbox_post_process.nms_pre pred_scores, pred_bboxes = self.s2anet_head.get_prediction(nms_pre) # post_process pred_bboxes, bbox_num = self.s2anet_bbox_post_process(pred_scores, pred_bboxes) # rescale the prediction back to origin image pred_bboxes = self.s2anet_bbox_post_process.get_pred( pred_bboxes, bbox_num, im_shape, scale_factor) # output output = {'bbox': pred_bboxes, 'bbox_num': bbox_num} return output def get_loss(self, ): loss = self._forward() return loss def get_pred(self): output = self._forward() return output