# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from scipy.optimize import linear_sum_assignment from collections import abc, defaultdict import numpy as np import paddle from ppdet.core.workspace import register, create, serializable from .meta_arch import BaseArch from .. import layers as L from ..keypoint_utils import transpred __all__ = ['HigherHRNet'] @register class HigherHRNet(BaseArch): __category__ = 'architecture' def __init__(self, backbone='HRNet', hrhrnet_head='HrHRNetHead', post_process='HrHRNetPostProcess', eval_flip=True, flip_perm=None, max_num_people=30): """ HigherHRNet network, see https://arxiv.org/abs/1908.10357; HigherHRNet+swahr, see https://arxiv.org/abs/2012.15175 Args: backbone (nn.Layer): backbone instance hrhrnet_head (nn.Layer): keypoint_head instance bbox_post_process (object): `BBoxPostProcess` instance """ super(HigherHRNet, self).__init__() self.backbone = backbone self.hrhrnet_head = hrhrnet_head self.post_process = post_process self.flip = eval_flip self.flip_perm = paddle.to_tensor(flip_perm) self.deploy = False self.interpolate = L.Upsample(2, mode='bilinear') self.pool = L.MaxPool(5, 1, 2) self.max_num_people = max_num_people @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # head kwargs = {'input_shape': backbone.out_shape} hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs) post_process = create(cfg['post_process']) return { 'backbone': backbone, "hrhrnet_head": hrhrnet_head, "post_process": post_process, } def _forward(self): if self.flip and not self.training and not self.deploy: self.inputs['image'] = paddle.concat( (self.inputs['image'], paddle.flip(self.inputs['image'], [3]))) body_feats = self.backbone(self.inputs) if self.training: return self.hrhrnet_head(body_feats, self.inputs) else: outputs = self.hrhrnet_head(body_feats) if self.flip and not self.deploy: outputs = [paddle.split(o, 2) for o in outputs] output_rflip = [ paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3]) for o in outputs ] output1 = [o[0] for o in outputs] heatmap = (output1[0] + output_rflip[0]) / 2. tagmaps = [output1[1], output_rflip[1]] outputs = [heatmap] + tagmaps outputs = self.get_topk(outputs) if self.deploy: return outputs res_lst = [] h = self.inputs['im_shape'][0, 0].numpy().item() w = self.inputs['im_shape'][0, 1].numpy().item() kpts, scores = self.post_process(*outputs, h, w) res_lst.append([kpts, scores]) return res_lst def get_loss(self): return self._forward() def get_pred(self): outputs = {} res_lst = self._forward() outputs['keypoint'] = res_lst return outputs def get_topk(self, outputs): # resize to image size outputs = [self.interpolate(x) for x in outputs] if len(outputs) == 3: tagmap = paddle.concat( (outputs[1].unsqueeze(4), outputs[2].unsqueeze(4)), axis=4) else: tagmap = outputs[1].unsqueeze(4) heatmap = outputs[0] N, J = 1, self.hrhrnet_head.num_joints heatmap_maxpool = self.pool(heatmap) # topk maxmap = heatmap * (heatmap == heatmap_maxpool) maxmap = maxmap.reshape([N, J, -1]) heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2) outputs = [heatmap, tagmap, heat_k, inds_k] return outputs @register @serializable class HrHRNetPostProcess(object): ''' HrHRNet postprocess contain: 1) get topk keypoints in the output heatmap 2) sample the tagmap's value corresponding to each of the topk coordinate 3) match different joints to combine to some people with Hungary algorithm 4) adjust the coordinate by +-0.25 to decrease error std 5) salvage missing joints by check positivity of heatmap - tagdiff_norm Args: max_num_people (int): max number of people support in postprocess heat_thresh (float): value of topk below this threshhold will be ignored tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk original_height, original_width (float): the original image size ''' def __init__(self, max_num_people=30, heat_thresh=0.1, tag_thresh=1.): self.max_num_people = max_num_people self.heat_thresh = heat_thresh self.tag_thresh = tag_thresh def lerp(self, j, y, x, heatmap): H, W = heatmap.shape[-2:] left = np.clip(x - 1, 0, W - 1) right = np.clip(x + 1, 0, W - 1) up = np.clip(y - 1, 0, H - 1) down = np.clip(y + 1, 0, H - 1) offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25, -0.25) offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25, -0.25) return offset_y + 0.5, offset_x + 0.5 def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height, original_width): N, J, H, W = heatmap.shape assert N == 1, "only support batch size 1" heatmap = heatmap[0].cpu().detach().numpy() tagmap = tagmap[0].cpu().detach().numpy() heats = heat_k[0].cpu().detach().numpy() inds_np = inds_k[0].cpu().detach().numpy() y = inds_np // W x = inds_np % W tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people), y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1]) coords = np.stack((y, x), axis=2) # threshold mask = heats > self.heat_thresh # cluster cluster = defaultdict(lambda: { 'coords': np.zeros((J, 2), dtype=np.float32), 'scores': np.zeros(J, dtype=np.float32), 'tags': [] }) for jid, m in enumerate(mask): num_valid = m.sum() if num_valid == 0: continue valid_inds = np.where(m)[0] valid_tags = tags[jid, m, :] if len(cluster) == 0: # initialize for i in valid_inds: tag = tags[jid, i] key = tag[0] cluster[key]['tags'].append(tag) cluster[key]['scores'][jid] = heats[jid, i] cluster[key]['coords'][jid] = coords[jid, i] continue candidates = list(cluster.keys())[:self.max_num_people] centroids = [ np.mean( cluster[k]['tags'], axis=0) for k in candidates ] num_clusters = len(centroids) # shape is (num_valid, num_clusters, tag_dim) dist = valid_tags[:, None, :] - np.array(centroids)[None, ...] l2_dist = np.linalg.norm(dist, ord=2, axis=2) # modulate dist with heat value, see `use_detection_val` cost = np.round(l2_dist) * 100 - heats[jid, m, None] # pad the cost matrix, otherwise new pose are ignored if num_valid > num_clusters: cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)), 'constant', constant_values=((0, 0), (0, 1e-10))) rows, cols = linear_sum_assignment(cost) for y, x in zip(rows, cols): tag = tags[jid, y] if y < num_valid and x < num_clusters and \ l2_dist[y, x] < self.tag_thresh: key = candidates[x] # merge to cluster else: key = tag[0] # initialize new cluster cluster[key]['tags'].append(tag) cluster[key]['scores'][jid] = heats[jid, y] cluster[key]['coords'][jid] = coords[jid, y] # shape is [k, J, 2] and [k, J] pose_tags = np.array([cluster[k]['tags'] for k in cluster]) pose_coords = np.array([cluster[k]['coords'] for k in cluster]) pose_scores = np.array([cluster[k]['scores'] for k in cluster]) valid = pose_scores > 0 pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32) if valid.sum() == 0: return pose_kpts, pose_kpts # refine coords valid_coords = pose_coords[valid].astype(np.int32) y = valid_coords[..., 0].flatten() x = valid_coords[..., 1].flatten() _, j = np.nonzero(valid) offsets = self.lerp(j, y, x, heatmap) pose_coords[valid, 0] += offsets[0] pose_coords[valid, 1] += offsets[1] # mean score before salvage mean_score = pose_scores.mean(axis=1) pose_kpts[valid, 2] = pose_scores[valid] # salvage missing joints if True: for pid, coords in enumerate(pose_coords): tag_mean = np.array(pose_tags[pid]).mean(axis=0) norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5 score = heatmap - np.round(norm) # (J, H, W) flat_score = score.reshape(J, -1) max_inds = np.argmax(flat_score, axis=1) max_scores = np.max(flat_score, axis=1) salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0) if salvage_joints.sum() == 0: continue y = max_inds[salvage_joints] // W x = max_inds[salvage_joints] % W offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap) y = y.astype(np.float32) + offsets[0] x = x.astype(np.float32) + offsets[1] pose_coords[pid][salvage_joints, 0] = y pose_coords[pid][salvage_joints, 1] = x pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints] pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1], original_height, original_width, min(H, W)) return pose_kpts, mean_score