# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on: # https://github.com/dvlab-research/GridMask/blob/master/detection_grid/maskrcnn_benchmark/data/transforms/grid.py from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np from PIL import Image class Gridmask(object): def __init__(self, use_h=True, use_w=True, rotate=1, offset=False, ratio=0.5, mode=1, prob=0.7, upper_iter=360000): super(Gridmask, self).__init__() self.use_h = use_h self.use_w = use_w self.rotate = rotate self.offset = offset self.ratio = ratio self.mode = mode self.prob = prob self.st_prob = prob self.upper_iter = upper_iter def __call__(self, x, curr_iter): self.prob = self.st_prob * min(1, 1.0 * curr_iter / self.upper_iter) if np.random.rand() > self.prob: return x h, w, _ = x.shape hh = int(1.5 * h) ww = int(1.5 * w) d = np.random.randint(2, h) self.l = min(max(int(d * self.ratio + 0.5), 1), d - 1) mask = np.ones((hh, ww), np.float32) st_h = np.random.randint(d) st_w = np.random.randint(d) if self.use_h: for i in range(hh // d): s = d * i + st_h t = min(s + self.l, hh) mask[s:t, :] *= 0 if self.use_w: for i in range(ww // d): s = d * i + st_w t = min(s + self.l, ww) mask[:, s:t] *= 0 r = np.random.randint(self.rotate) mask = Image.fromarray(np.uint8(mask)) mask = mask.rotate(r) mask = np.asarray(mask) mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2 + w].astype(np.float32) if self.mode == 1: mask = 1 - mask mask = np.expand_dims(mask, axis=-1) if self.offset: offset = (2 * (np.random.rand(h, w) - 0.5)).astype(np.float32) x = (x * mask + offset * (1 - mask)).astype(x.dtype) else: x = (x * mask).astype(x.dtype) return x