// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // reference from https://github.com/RangiLyu/nanodet/tree/main/demo_ncnn #include "picodet.h" #include #include inline float fast_exp(float x) { union { uint32_t i; float f; } v{}; v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f); return v.f; } inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); } template int activation_function_softmax(const _Tp *src, _Tp *dst, int length) { const _Tp alpha = *std::max_element(src, src + length); _Tp denominator{0}; for (int i = 0; i < length; ++i) { dst[i] = fast_exp(src[i] - alpha); denominator += dst[i]; } for (int i = 0; i < length; ++i) { dst[i] /= denominator; } return 0; } bool PicoDet::hasGPU = false; PicoDet *PicoDet::detector = nullptr; PicoDet::PicoDet(const char *param, const char *bin, int input_width, int input_hight, bool useGPU, float score_threshold_ = 0.5, float nms_threshold_ = 0.3) { this->Net = new ncnn::Net(); #if NCNN_VULKAN this->hasGPU = ncnn::get_gpu_count() > 0; #endif this->Net->opt.use_vulkan_compute = this->hasGPU && useGPU; this->Net->opt.use_fp16_arithmetic = true; this->Net->load_param(param); this->Net->load_model(bin); this->in_w = input_width; this->in_h = input_hight; this->score_threshold = score_threshold_; this->nms_threshold = nms_threshold_; } PicoDet::~PicoDet() { delete this->Net; } void PicoDet::preprocess(cv::Mat &image, ncnn::Mat &in) { // cv::resize(image, image, cv::Size(this->in_w, this->in_h), 0.f, 0.f); int img_w = image.cols; int img_h = image.rows; in = ncnn::Mat::from_pixels_resize(image.data, ncnn::Mat::PIXEL_BGR, img_w, img_h, this->in_w, this->in_h); const float mean_vals[3] = {103.53f, 116.28f, 123.675f}; const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f}; in.substract_mean_normalize(mean_vals, norm_vals); } int PicoDet::detect(cv::Mat image, std::vector &result_list, bool has_postprocess) { ncnn::Mat input; preprocess(image, input); auto ex = this->Net->create_extractor(); ex.set_light_mode(false); ex.set_num_threads(4); #if NCNN_VULKAN ex.set_vulkan_compute(this->hasGPU); #endif ex.input("image", input); // picodet this->image_h = image.rows; this->image_w = image.cols; std::vector> results; results.resize(this->num_class); if (has_postprocess) { ncnn::Mat dis_pred; ncnn::Mat cls_pred; ex.extract(this->nms_heads_info[0].c_str(), dis_pred); ex.extract(this->nms_heads_info[1].c_str(), cls_pred); std::cout << dis_pred.h << " " << dis_pred.w << std::endl; std::cout << cls_pred.h << " " << cls_pred.w << std::endl; this->nms_boxes(cls_pred, dis_pred, this->score_threshold, results); } else { for (const auto &head_info : this->non_postprocess_heads_info) { ncnn::Mat dis_pred; ncnn::Mat cls_pred; ex.extract(head_info.dis_layer.c_str(), dis_pred); ex.extract(head_info.cls_layer.c_str(), cls_pred); this->decode_infer(cls_pred, dis_pred, head_info.stride, this->score_threshold, results); } } for (int i = 0; i < (int)results.size(); i++) { this->nms(results[i], this->nms_threshold); for (auto box : results[i]) { box.x1 = box.x1 / this->in_w * this->image_w; box.x2 = box.x2 / this->in_w * this->image_w; box.y1 = box.y1 / this->in_h * this->image_h; box.y2 = box.y2 / this->in_h * this->image_h; result_list.push_back(box); } } return 0; } void PicoDet::nms_boxes(ncnn::Mat &cls_pred, ncnn::Mat &dis_pred, float score_threshold, std::vector> &result_list) { BoxInfo bbox; int i, j; for (i = 0; i < dis_pred.h; i++) { bbox.x1 = dis_pred.row(i)[0]; bbox.y1 = dis_pred.row(i)[1]; bbox.x2 = dis_pred.row(i)[2]; bbox.y2 = dis_pred.row(i)[3]; const float *scores = cls_pred.row(i); float score = 0; int cur_label = 0; for (int label = 0; label < this->num_class; label++) { float score_ = cls_pred.row(label)[i]; if (score_ > score) { score = score_; cur_label = label; } } bbox.score = score; bbox.label = cur_label; result_list[cur_label].push_back(bbox); } } void PicoDet::decode_infer(ncnn::Mat &cls_pred, ncnn::Mat &dis_pred, int stride, float threshold, std::vector> &results) { int feature_h = ceil((float)this->in_w / stride); int feature_w = ceil((float)this->in_h / stride); for (int idx = 0; idx < feature_h * feature_w; idx++) { const float *scores = cls_pred.row(idx); int row = idx / feature_w; int col = idx % feature_w; float score = 0; int cur_label = 0; for (int label = 0; label < this->num_class; label++) { if (scores[label] > score) { score = scores[label]; cur_label = label; } } if (score > threshold) { const float *bbox_pred = dis_pred.row(idx); results[cur_label].push_back( this->disPred2Bbox(bbox_pred, cur_label, score, col, row, stride)); } } } BoxInfo PicoDet::disPred2Bbox(const float *&dfl_det, int label, float score, int x, int y, int stride) { float ct_x = (x + 0.5) * stride; float ct_y = (y + 0.5) * stride; std::vector dis_pred; dis_pred.resize(4); for (int i = 0; i < 4; i++) { float dis = 0; float *dis_after_sm = new float[this->reg_max + 1]; activation_function_softmax(dfl_det + i * (this->reg_max + 1), dis_after_sm, this->reg_max + 1); for (int j = 0; j < this->reg_max + 1; j++) { dis += j * dis_after_sm[j]; } dis *= stride; dis_pred[i] = dis; delete[] dis_after_sm; } float xmin = (std::max)(ct_x - dis_pred[0], .0f); float ymin = (std::max)(ct_y - dis_pred[1], .0f); float xmax = (std::min)(ct_x + dis_pred[2], (float)this->in_w); float ymax = (std::min)(ct_y + dis_pred[3], (float)this->in_w); return BoxInfo{xmin, ymin, xmax, ymax, score, label}; } void PicoDet::nms(std::vector &input_boxes, float NMS_THRESH) { std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; }); std::vector vArea(input_boxes.size()); for (int i = 0; i < int(input_boxes.size()); ++i) { vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) * (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1); } for (int i = 0; i < int(input_boxes.size()); ++i) { for (int j = i + 1; j < int(input_boxes.size());) { float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1); float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1); float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2); float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2); float w = (std::max)(float(0), xx2 - xx1 + 1); float h = (std::max)(float(0), yy2 - yy1 + 1); float inter = w * h; float ovr = inter / (vArea[i] + vArea[j] - inter); if (ovr >= NMS_THRESH) { input_boxes.erase(input_boxes.begin() + j); vArea.erase(vArea.begin() + j); } else { j++; } } } }