# PicoDet NCNN Demo 该Demo提供的预测代码是根据[Tencent's NCNN framework](https://github.com/Tencent/ncnn)推理库预测的。 # 第一步:编译 ## Windows ### Step1. Download and Install Visual Studio from https://visualstudio.microsoft.com/vs/community/ ### Step2. Download and install OpenCV from https://github.com/opencv/opencv/releases 为了方便,如果环境是gcc8.2 x86环境,可直接下载以下库: ```shell wget https://paddledet.bj.bcebos.com/data/opencv-3.4.16_gcc8.2_ffmpeg.tar.gz tar -xf opencv-3.4.16_gcc8.2_ffmpeg.tar.gz ``` ### Step3(可选). Download and install Vulkan SDK from https://vulkan.lunarg.com/sdk/home ### Step4:编译NCNN ``` shell script git clone --recursive https://github.com/Tencent/ncnn.git ``` Build NCNN following this tutorial: [Build for Windows x64 using VS2017](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-windows-x64-using-visual-studio-community-2017) ### Step5. 增加 `ncnn_DIR` = `YOUR_NCNN_PATH/build/install/lib/cmake/ncnn` 到系统变量中 Build project: Open x64 Native Tools Command Prompt for VS 2019 or 2017 ``` cmd cd mkdir -p build cd build cmake .. msbuild picodet_demo.vcxproj /p:configuration=release /p:platform=x64 ``` ## Linux ### Step1. Build and install OpenCV from https://github.com/opencv/opencv ### Step2(可选). Download Vulkan SDK from https://vulkan.lunarg.com/sdk/home ### Step3:编译NCNN Clone NCNN repository ``` shell script git clone --recursive https://github.com/Tencent/ncnn.git ``` Build NCNN following this tutorial: [Build for Linux / NVIDIA Jetson / Raspberry Pi](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-linux) ### Step4:编译可执行文件 ``` shell script cd mkdir build cd build cmake .. make ``` # Run demo - 准备模型 ```shell modelName=picodet_s_320_coco_lcnet # 导出Inference model python tools/export_model.py \ -c configs/picodet/${modelName}.yml \ -o weights=${modelName}.pdparams \ --output_dir=inference_model # 转换到ONNX paddle2onnx --model_dir inference_model/${modelName} \ --model_filename model.pdmodel \ --params_filename model.pdiparams \ --opset_version 11 \ --save_file ${modelName}.onnx # 简化模型 python -m onnxsim ${modelName}.onnx ${modelName}_processed.onnx # 将模型转换至NCNN格式 Run onnx2ncnn in ncnn tools to generate ncnn .param and .bin file. ``` 转NCNN模型可以利用在线转换工具 [https://convertmodel.com](https://convertmodel.com/) 为了快速测试,可直接下载:[picodet_s_320_coco_lcnet-opt.bin](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet-opt.bin)/ [picodet_s_320_coco_lcnet-opt.param](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet-opt.param)(不带后处理)。 **注意:**由于带后处理后,NCNN预测会出NAN,暂时使用不带后处理Demo即可,带后处理的Demo正在升级中,很快发布。 ## 开始运行 首先新建预测结果存放目录: ```shell cp -r ../demo_onnxruntime/imgs . cd build mkdir ../results ``` - 预测一张图片 ``` shell ./picodet_demo 0 ../picodet_s_320_coco_lcnet.bin ../picodet_s_320_coco_lcnet.param 320 320 ../imgs/dog.jpg 0 ``` 具体参数解析可参考`main.cpp`。 -测试速度Benchmark ``` shell ./picodet_demo 1 ../picodet_s_320_lcnet.bin ../picodet_s_320_lcnet.param 320 320 0 ``` ## FAQ - 预测结果精度不对: 请先确认模型输入shape是否对齐,并且模型输出name是否对齐,不带后处理的PicoDet增强版模型输出name如下: ```shell # 分类分支 | 检测分支 {"transpose_0.tmp_0", "transpose_1.tmp_0"}, {"transpose_2.tmp_0", "transpose_3.tmp_0"}, {"transpose_4.tmp_0", "transpose_5.tmp_0"}, {"transpose_6.tmp_0", "transpose_7.tmp_0"}, ``` 可使用[netron](https://netron.app)查看具体name,并修改`picodet_mnn.hpp`中相应`non_postprocess_heads_info`数组。