# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.special import softmax def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] class PicoDetPostProcess(object): """ Args: input_shape (int): network input image size ori_shape (int): ori image shape of before padding scale_factor (float): scale factor of ori image enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, input_shape, ori_shape, scale_factor, strides=[8, 16, 32, 64], score_threshold=0.4, nms_threshold=0.5, nms_top_k=1000, keep_top_k=100): self.ori_shape = ori_shape self.input_shape = input_shape self.scale_factor = scale_factor self.strides = strides self.score_threshold = score_threshold self.nms_threshold = nms_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k def warp_boxes(self, boxes, ori_shape): """Apply transform to boxes """ width, height = ori_shape[1], ori_shape[0] n = len(boxes) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2) # x1y1, x2y2, x1y2, x2y1 # xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate( (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) return xy.astype(np.float32) else: return boxes def __call__(self, scores, raw_boxes): batch_size = raw_boxes[0].shape[0] reg_max = int(raw_boxes[0].shape[-1] / 4 - 1) out_boxes_num = [] out_boxes_list = [] for batch_id in range(batch_size): # generate centers decode_boxes = [] select_scores = [] for stride, box_distribute, score in zip(self.strides, raw_boxes, scores): box_distribute = box_distribute[batch_id] score = score[batch_id] # centers fm_h = self.input_shape[0] / stride fm_w = self.input_shape[1] / stride h_range = np.arange(fm_h) w_range = np.arange(fm_w) ww, hh = np.meshgrid(w_range, h_range) ct_row = (hh.flatten() + 0.5) * stride ct_col = (ww.flatten() + 0.5) * stride center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) # box distribution to distance reg_range = np.arange(reg_max + 1) box_distance = box_distribute.reshape((-1, reg_max + 1)) box_distance = softmax(box_distance, axis=1) box_distance = box_distance * np.expand_dims(reg_range, axis=0) box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) box_distance = box_distance * stride # top K candidate topk_idx = np.argsort(score.max(axis=1))[::-1] topk_idx = topk_idx[:self.nms_top_k] center = center[topk_idx] score = score[topk_idx] box_distance = box_distance[topk_idx] # decode box decode_box = center + [-1, -1, 1, 1] * box_distance select_scores.append(score) decode_boxes.append(decode_box) # nms bboxes = np.concatenate(decode_boxes, axis=0) confidences = np.concatenate(select_scores, axis=0) picked_box_probs = [] picked_labels = [] for class_index in range(0, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > self.score_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = bboxes[mask, :] box_probs = np.concatenate( [subset_boxes, probs.reshape(-1, 1)], axis=1) box_probs = hard_nms( box_probs, iou_threshold=self.nms_threshold, top_k=self.keep_top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if len(picked_box_probs) == 0: out_boxes_list.append(np.empty((0, 4))) out_boxes_num.append(0) else: picked_box_probs = np.concatenate(picked_box_probs) # resize output boxes picked_box_probs[:, :4] = self.warp_boxes( picked_box_probs[:, :4], self.ori_shape[batch_id]) im_scale = np.concatenate([ self.scale_factor[batch_id][::-1], self.scale_factor[batch_id][::-1] ]) picked_box_probs[:, :4] /= im_scale # clas score box out_boxes_list.append( np.concatenate( [ np.expand_dims( np.array(picked_labels), axis=-1), np.expand_dims( picked_box_probs[:, 4], axis=-1), picked_box_probs[:, :4] ], axis=1)) out_boxes_num.append(len(picked_labels)) out_boxes_list = np.concatenate(out_boxes_list, axis=0) out_boxes_num = np.asarray(out_boxes_num).astype(np.int32) return out_boxes_list, out_boxes_num