import cv2 import numpy as np import scipy import lap from scipy.spatial.distance import cdist from cython_bbox import bbox_overlaps as bbox_ious from dependence.ByteTrack.yolox.tracker import kalman_filter import time def merge_matches(m1, m2, shape): O,P,Q = shape m1 = np.asarray(m1) m2 = np.asarray(m2) M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) mask = M1*M2 match = mask.nonzero() match = list(zip(match[0], match[1])) unmatched_O = tuple(set(range(O)) - set([i for i, j in match])) unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match])) return match, unmatched_O, unmatched_Q def _indices_to_matches(cost_matrix, indices, thresh): matched_cost = cost_matrix[tuple(zip(*indices))] matched_mask = (matched_cost <= thresh) matches = indices[matched_mask] unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b def linear_assignment(cost_matrix, thresh): if cost_matrix.size == 0: return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) matches, unmatched_a, unmatched_b = [], [], [] cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) for ix, mx in enumerate(x): if mx >= 0: matches.append([ix, mx]) unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] matches = np.asarray(matches) return matches, unmatched_a, unmatched_b def ious(atlbrs, btlbrs): """ Compute cost based on IoU :type atlbrs: list[tlbr] | np.ndarray :type atlbrs: list[tlbr] | np.ndarray :rtype ious np.ndarray """ ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float64) if ious.size == 0: return ious ious = bbox_ious( np.ascontiguousarray(atlbrs, dtype=np.float64), np.ascontiguousarray(btlbrs, dtype=np.float64) ) return ious def iou_distance(atracks, btracks): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix def v_iou_distance(atracks, btracks): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in atracks] btlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in btracks] _ious = ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix def embedding_distance(tracks, detections, metric='cosine'): """ :param tracks: list[STrack] :param detections: list[BaseTrack] :param metric: :return: cost_matrix np.ndarray """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float64) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float64) #for i, track in enumerate(tracks): #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float64) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features return cost_matrix def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position) cost_matrix[row, gating_distance > gating_threshold] = np.inf return cost_matrix def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position, metric='maha') cost_matrix[row, gating_distance > gating_threshold] = np.inf cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance return cost_matrix def fuse_iou(cost_matrix, tracks, detections): if cost_matrix.size == 0: return cost_matrix reid_sim = 1 - cost_matrix iou_dist = iou_distance(tracks, detections) iou_sim = 1 - iou_dist fuse_sim = reid_sim * (1 + iou_sim) / 2 det_scores = np.array([det.score for det in detections]) det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) #fuse_sim = fuse_sim * (1 + det_scores) / 2 fuse_cost = 1 - fuse_sim return fuse_cost def fuse_score(cost_matrix, detections): if cost_matrix.size == 0: return cost_matrix iou_sim = 1 - cost_matrix det_scores = np.array([det.score for det in detections]) det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) fuse_sim = iou_sim * det_scores fuse_cost = 1 - fuse_sim return fuse_cost