# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.engine import Trainer, init_parallel_env from ppdet.metrics.coco_utils import json_eval_results from ppdet.slim import build_slim_model from ppdet.utils.logger import setup_logger logger = setup_logger('eval') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='Whether to re eval with already exists bbox.json or mask.json') parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") # TODO: bias should be unified parser.add_argument( "--bias", action="store_true", help="whether add bias or not while getting w and h") parser.add_argument( "--classwise", action="store_true", help="whether per-category AP and draw P-R Curve or not.") parser.add_argument( '--save_prediction_only', action='store_true', default=False, help='Whether to save the evaluation results only') args = parser.parse_args() return args def run(FLAGS, cfg): if FLAGS.json_eval: logger.info( "In json_eval mode, PaddleDetection will evaluate json files in " "output_eval directly. And proposal.json, bbox.json and mask.json " "will be detected by default.") json_eval_results( cfg.metric, json_directory=FLAGS.output_eval, dataset=cfg['EvalDataset']) return # init parallel environment if nranks > 1 init_parallel_env() # build trainer trainer = Trainer(cfg, mode='eval') # load weights trainer.load_weights(cfg.weights) # training trainer.evaluate() def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) # TODO: bias should be unified cfg['bias'] = 1 if FLAGS.bias else 0 cfg['classwise'] = True if FLAGS.classwise else False cfg['output_eval'] = FLAGS.output_eval cfg['save_prediction_only'] = FLAGS.save_prediction_only merge_config(FLAGS.opt) # disable npu in config by default if 'use_npu' not in cfg: cfg.use_npu = False # disable xpu in config by default if 'use_xpu' not in cfg: cfg.use_xpu = False if cfg.use_gpu: place = paddle.set_device('gpu') elif cfg.use_npu: place = paddle.set_device('npu') elif cfg.use_xpu: place = paddle.set_device('xpu') else: place = paddle.set_device('cpu') if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu: cfg['norm_type'] = 'bn' if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval') check_config(cfg) check_gpu(cfg.use_gpu) check_npu(cfg.use_npu) check_xpu(cfg.use_xpu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()