architecture: YOLOv3 use_gpu: true max_iters: 120000 log_iter: 20 save_dir: output snapshot_iter: 2000 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar weights: https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar num_classes: 6 YOLOv3: backbone: DarkNet yolo_head: YOLOv3Head DarkNet: norm_type: sync_bn norm_decay: 0. depth: 53 YOLOv3Head: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]] norm_decay: 0. yolo_loss: YOLOv3Loss nms: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 400 normalized: false score_threshold: 0.005 YOLOv3Loss: batch_size: 8 ignore_thresh: 0.7 label_smooth: false LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 60000 - 80000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: '../../configs/yolov3_reader.yml' TrainReader: batch_size: 8 dataset: !COCODataSet dataset_dir: dataset/vehicle anno_path: annotations/instances_train2017.json image_dir: train2017 with_background: false EvalReader: batch_size: 8 dataset: !COCODataSet dataset_dir: dataset/vehicle anno_path: annotations/instances_val2017.json image_dir: val2017 with_background: false TestReader: batch_size: 1 dataset: !ImageFolder anno_path: contrib/VehicleDetection/vehicle.json with_background: false