architecture: YOLOv3 use_gpu: true max_iters: 300000 log_smooth_window: 100 log_iter: 100 save_dir: output snapshot_iter: 10000 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar weights: output/ppyolo_tiny/model_final num_classes: 80 use_fine_grained_loss: true use_ema: true ema_decay: 0.9998 YOLOv3: backbone: MobileNetV3 yolo_head: PPYOLOTinyHead use_fine_grained_loss: true MobileNetV3: norm_type: sync_bn norm_decay: 0. model_name: large scale: .5 extra_block_filters: [] feature_maps: [1, 2, 3, 4, 6] PPYOLOTinyHead: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 15], [24, 36], [72, 42], [35, 87], [102, 96], [60, 170], [220, 125], [128, 222], [264, 266]] detection_block_channels: [160, 128, 96] norm_decay: 0. scale_x_y: 1.05 yolo_loss: YOLOv3Loss spp: true drop_block: true nms: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 normalized: false score_threshold: 0.01 YOLOv3Loss: ignore_thresh: 0.5 scale_x_y: 1.05 label_smooth: false use_fine_grained_loss: true iou_loss: IouLoss IouLoss: loss_weight: 2.5 max_height: 512 max_width: 512 LearningRate: base_lr: 0.005 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 200000 - 250000 - 280000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.949 type: Momentum regularizer: factor: 0.0005 type: L2 TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score'] num_max_boxes: 100 dataset: !COCODataSet image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: train_data/dataset/coco with_background: false sample_transforms: - !DecodeImage to_rgb: True with_mixup: True - !MixupImage alpha: 1.5 beta: 1.5 - !ColorDistort {} - !RandomExpand fill_value: [123.675, 116.28, 103.53] ratio: 2 - !RandomCrop {} - !RandomFlipImage is_normalized: false - !NormalizeBox {} - !PadBox num_max_boxes: 100 - !BboxXYXY2XYWH {} batch_transforms: - !RandomShape sizes: [192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512] random_inter: True - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True # Gt2YoloTarget is only used when use_fine_grained_loss set as true, # this operator will be deleted automatically if use_fine_grained_loss # is set as false - !Gt2YoloTarget anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 15], [24, 36], [72, 42], [35, 87], [102, 96], [60, 170], [220, 125], [128, 222], [264, 266]] downsample_ratios: [32, 16, 8] iou_thresh: 0.25 num_classes: 80 batch_size: 32 shuffle: true mixup_epoch: 200 drop_last: true worker_num: 16 bufsize: 4 use_process: true EvalReader: inputs_def: fields: ['image', 'im_size', 'im_id'] num_max_boxes: 100 dataset: !COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: train_data/dataset/coco with_background: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 320 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !PadBox num_max_boxes: 100 - !Permute to_bgr: false channel_first: True batch_size: 1 drop_empty: false worker_num: 2 bufsize: 4 TestReader: inputs_def: image_shape: [3, 320, 320] fields: ['image', 'im_size', 'im_id'] dataset: !ImageFolder anno_path: annotations/instances_val2017.json with_background: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 320 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True batch_size: 1