architecture: YOLOv3 use_gpu: true max_iters: 70000 log_smooth_window: 20 save_dir: output snapshot_iter: 3000 metric: VOC map_type: integral pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar weights: output/ppyolo_eb_voc/best_model num_classes: 20 use_fine_grained_loss: true log_iter: 1000 use_ema: true ema_decay: 0.9998 YOLOv3: backbone: ResNet_EB yolo_head: EBHead ResNet_EB: norm_type: sync_bn freeze_at: 0 freeze_norm: false norm_decay: 0. depth: 34 variant: d feature_maps: [3, 4, 5] EBHead: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] norm_decay: 0. yolo_loss: YOLOv3Loss nms: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 normalized: false score_threshold: 0.01 YOLOv3Loss: ignore_thresh: 0.7 label_smooth: false use_fine_grained_loss: true iou_loss: IouLoss IouLoss: loss_weight: 2.5 max_height: 608 max_width: 608 LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 35000 - 60000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'ppyolo_reader.yml' TrainReader: dataset: !VOCDataSet dataset_dir: dataset/voc anno_path: trainval.txt use_default_label: false with_background: false mixup_epoch: 200 batch_size: 8 EvalReader: inputs_def: image_shape: [3, 608, 608] fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult'] num_max_boxes: 50 dataset: !VOCDataSet dataset_dir: dataset/voc anno_path: test.txt use_default_label: false with_background: false TestReader: dataset: !ImageFolder use_default_label: false with_background: false