architecture: MaskRCNN use_gpu: true max_iters: 180000 snapshot_iter: 10000 log_iter: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar metric: COCO weights: output/mask_rcnn_r50_1x/model_final num_classes: 81 MaskRCNN: backbone: ResNet rpn_head: RPNHead roi_extractor: RoIAlign bbox_assigner: BBoxAssigner bbox_head: BBoxHead mask_assigner: MaskAssigner mask_head: MaskHead ResNet: norm_type: affine_channel norm_decay: 0. depth: 50 feature_maps: 4 freeze_at: 2 ResNetC5: depth: 50 norm_type: affine_channel RPNHead: anchor_generator: anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] rpn_target_assign: rpn_batch_size_per_im: 256 rpn_fg_fraction: 0.5 rpn_negative_overlap: 0.3 rpn_positive_overlap: 0.7 rpn_straddle_thresh: 0.0 train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 12000 post_nms_top_n: 2000 test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 6000 post_nms_top_n: 1000 RoIAlign: resolution: 14 spatial_scale: 0.0625 sampling_ratio: 0 BBoxHead: head: ResNetC5 nms: keep_top_k: 100 nms_threshold: 0.5 normalized: false score_threshold: 0.05 MaskHead: dilation: 1 conv_dim: 256 resolution: 14 BBoxAssigner: batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_hi: 0.5 bg_thresh_lo: 0.0 fg_fraction: 0.25 fg_thresh: 0.5 MaskAssigner: resolution: 14 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [120000, 160000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'mask_reader.yml'