# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import Normal, Constant from paddle import ParamAttr from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Linear from paddle.regularizer import L2Decay from paddle.nn.initializer import KaimingNormal, XavierNormal from ppdet.core.workspace import register __all__ = ['PPLCNetEmbedding'] # Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se. # k: kernel_size # in_c: input channel number in depthwise block # out_c: output channel number in depthwise block # s: stride in depthwise block # use_se: whether to use SE block NET_CONFIG = { "blocks2": #k, in_c, out_c, s, use_se [[3, 16, 32, 1, False]], "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]], "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]], "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False]], "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]] } def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNLayer(nn.Layer): def __init__(self, num_channels, filter_size, num_filters, stride, num_groups=1): super().__init__() self.conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=num_groups, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn = BatchNorm2D( num_filters, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self.hardswish = nn.Hardswish() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.hardswish(x) return x class DepthwiseSeparable(nn.Layer): def __init__(self, num_channels, num_filters, stride, dw_size=3, use_se=False): super().__init__() self.use_se = use_se self.dw_conv = ConvBNLayer( num_channels=num_channels, num_filters=num_channels, filter_size=dw_size, stride=stride, num_groups=num_channels) if use_se: self.se = SEModule(num_channels) self.pw_conv = ConvBNLayer( num_channels=num_channels, filter_size=1, num_filters=num_filters, stride=1) def forward(self, x): x = self.dw_conv(x) if self.use_se: x = self.se(x) x = self.pw_conv(x) return x class SEModule(nn.Layer): def __init__(self, channel, reduction=4): super().__init__() self.avg_pool = AdaptiveAvgPool2D(1) self.conv1 = Conv2D( in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = Conv2D( in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0) self.hardsigmoid = nn.Hardsigmoid() def forward(self, x): identity = x x = self.avg_pool(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.hardsigmoid(x) x = paddle.multiply(x=identity, y=x) return x class PPLCNet(nn.Layer): """ PP-LCNet, see https://arxiv.org/abs/2109.15099. This code is different from PPLCNet in ppdet/modeling/backbones/lcnet.py or in PaddleClas, because the output is the flatten feature of last_conv. Args: scale (float): Scale ratio of channels. class_expand (int): Number of channels of conv feature. """ def __init__(self, scale=1.0, class_expand=1280): super(PPLCNet, self).__init__() self.scale = scale self.class_expand = class_expand self.conv1 = ConvBNLayer( num_channels=3, filter_size=3, num_filters=make_divisible(16 * scale), stride=2) self.blocks2 = nn.Sequential(*[ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"]) ]) self.blocks3 = nn.Sequential(*[ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"]) ]) self.blocks4 = nn.Sequential(*[ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"]) ]) self.blocks5 = nn.Sequential(*[ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"]) ]) self.blocks6 = nn.Sequential(*[ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"]) ]) self.avg_pool = AdaptiveAvgPool2D(1) self.last_conv = Conv2D( in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale), out_channels=self.class_expand, kernel_size=1, stride=1, padding=0, bias_attr=False) self.hardswish = nn.Hardswish() self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) def forward(self, x): x = self.conv1(x) x = self.blocks2(x) x = self.blocks3(x) x = self.blocks4(x) x = self.blocks5(x) x = self.blocks6(x) x = self.avg_pool(x) x = self.last_conv(x) x = self.hardswish(x) x = self.flatten(x) return x class FC(nn.Layer): def __init__(self, input_ch, output_ch): super(FC, self).__init__() weight_attr = ParamAttr(initializer=XavierNormal()) self.fc = paddle.nn.Linear(input_ch, output_ch, weight_attr=weight_attr) def forward(self, x): out = self.fc(x) return out @register class PPLCNetEmbedding(nn.Layer): """ PPLCNet Embedding Args: input_ch (int): Number of channels of input conv feature. output_ch (int): Number of channels of output conv feature. """ def __init__(self, scale=2.5, input_ch=1280, output_ch=512): super(PPLCNetEmbedding, self).__init__() self.backbone = PPLCNet(scale=scale) self.neck = FC(input_ch, output_ch) def forward(self, x): feat = self.backbone(x) feat_out = self.neck(feat) return feat_out