# 服务端预测部署 `PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。 本教程以在COCO数据集上用`configs/yolov3/yolov3_darknet53_270e_coco.yml`算法训练的模型进行部署。 预训练模型权重文件为[yolov3_darknet53_270e_coco.pdparams](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) 。 ## 1. 首先验证模型 ``` python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg ``` ## 2. 安装 paddle serving 请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.7.0) 中安装教程安装(版本>=0.7.0)。 ## 3. 导出模型 PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md) ``` python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True ``` 以上命令会在`output_inference/`文件夹下生成一个`yolov3_darknet53_270e_coco`文件夹: ``` output_inference │ ├── yolov3_darknet53_270e_coco │ │ ├── infer_cfg.yml │ │ ├── model.pdiparams │ │ ├── model.pdiparams.info │ │ ├── model.pdmodel │ │ ├── serving_client │ │ │ ├── serving_client_conf.prototxt │ │ │ ├── serving_client_conf.stream.prototxt │ │ ├── serving_server │ │ │ ├── __model__ │ │ │ ├── __params__ │ │ │ ├── serving_server_conf.prototxt │ │ │ ├── serving_server_conf.stream.prototxt │ │ │ ├── ... ``` `serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息 `serving_client_conf.prototxt`文件内容为: ``` feed_var { name: "im_shape" alias_name: "im_shape" is_lod_tensor: false feed_type: 1 shape: 2 } feed_var { name: "image" alias_name: "image" is_lod_tensor: false feed_type: 1 shape: 3 shape: 608 shape: 608 } feed_var { name: "scale_factor" alias_name: "scale_factor" is_lod_tensor: false feed_type: 1 shape: 2 } fetch_var { name: "multiclass_nms3_0.tmp_0" alias_name: "multiclass_nms3_0.tmp_0" is_lod_tensor: true fetch_type: 1 shape: -1 } fetch_var { name: "multiclass_nms3_0.tmp_2" alias_name: "multiclass_nms3_0.tmp_2" is_lod_tensor: false fetch_type: 2 ``` ## 4. 启动PaddleServing服务 ``` cd output_inference/yolov3_darknet53_270e_coco/ # GPU python -m paddle_serving_server.serve --model serving_server --port 9393 --gpu_ids 0 # CPU python -m paddle_serving_server.serve --model serving_server --port 9393 ``` ## 5. 测试部署的服务 准备`label_list.txt`文件,示例`label_list.txt`文件内容为 ``` person bicycle car motorcycle airplane bus train truck boat traffic light fire hydrant stop sign parking meter bench bird cat dog horse sheep cow elephant bear zebra giraffe backpack umbrella handbag tie suitcase frisbee skis snowboard sports ball kite baseball bat baseball glove skateboard surfboard tennis racket bottle wine glass cup fork knife spoon bowl banana apple sandwich orange broccoli carrot hot dog pizza donut cake chair couch potted plant bed dining table toilet tv laptop mouse remote keyboard cell phone microwave oven toaster sink refrigerator book clock vase scissors teddy bear hair drier toothbrush ``` 设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt` 设置`fetch`为`fetch=["multiclass_nms3_0.tmp_0"])` 测试 ``` # 进入目录 cd output_inference/yolov3_darknet53_270e_coco/ # 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`000000014439.jpg`两个文件 python ../../deploy/serving/test_client.py ../../deploy/serving/label_list.txt ../../demo/000000014439.jpg ```