# DETR ## Introduction DETR is an object detection model based on transformer. We reproduced the model of the paper. ## Model Zoo | Backbone | Model | Images/GPU | Inf time (fps) | Box AP | Config | Download | |:------:|:--------:|:--------:|:--------------:|:------:|:------:|:--------:| | R-50 | DETR | 4 | --- | 42.3 | [config](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/detr/detr_r50_1x_coco.yml) | [model](https://paddledet.bj.bcebos.com/models/detr_r50_1x_coco.pdparams) | **Notes:** - DETR is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`. - DETR uses 8GPU to train 500 epochs. GPU multi-card training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/detr/detr_r50_1x_coco.yml --fleet ``` ## Citations ``` @inproceedings{detr, author = {Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko}, title = {End-to-End Object Detection with Transformers}, booktitle = {ECCV}, year = {2020} } ```