# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle.utils import try_import from ppdet.core.workspace import register, serializable from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @register @serializable class UnstructuredPruner(object): def __init__(self, stable_epochs, pruning_epochs, tunning_epochs, pruning_steps, ratio, initial_ratio, prune_params_type=None): self.stable_epochs = stable_epochs self.pruning_epochs = pruning_epochs self.tunning_epochs = tunning_epochs self.ratio = ratio self.prune_params_type = prune_params_type self.initial_ratio = initial_ratio self.pruning_steps = pruning_steps def __call__(self, model, steps_per_epoch, skip_params_func=None): paddleslim = try_import('paddleslim') from paddleslim import GMPUnstructuredPruner configs = { 'pruning_strategy': 'gmp', 'stable_iterations': self.stable_epochs * steps_per_epoch, 'pruning_iterations': self.pruning_epochs * steps_per_epoch, 'tunning_iterations': self.tunning_epochs * steps_per_epoch, 'resume_iteration': 0, 'pruning_steps': self.pruning_steps, 'initial_ratio': self.initial_ratio, } pruner = GMPUnstructuredPruner( model, ratio=self.ratio, skip_params_func=skip_params_func, prune_params_type=self.prune_params_type, local_sparsity=True, configs=configs) return pruner