# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is borrow from https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/eval_kitti_track/munkres.py """ import sys __all__ = ['Munkres', 'make_cost_matrix'] class Munkres: """ Calculate the Munkres solution to the classical assignment problem. See the module documentation for usage. """ def __init__(self): """Create a new instance""" self.C = None self.row_covered = [] self.col_covered = [] self.n = 0 self.Z0_r = 0 self.Z0_c = 0 self.marked = None self.path = None def make_cost_matrix(profit_matrix, inversion_function): """ **DEPRECATED** Please use the module function ``make_cost_matrix()``. """ import munkres return munkres.make_cost_matrix(profit_matrix, inversion_function) make_cost_matrix = staticmethod(make_cost_matrix) def pad_matrix(self, matrix, pad_value=0): """ Pad a possibly non-square matrix to make it square. :Parameters: matrix : list of lists matrix to pad pad_value : int value to use to pad the matrix :rtype: list of lists :return: a new, possibly padded, matrix """ max_columns = 0 total_rows = len(matrix) for row in matrix: max_columns = max(max_columns, len(row)) total_rows = max(max_columns, total_rows) new_matrix = [] for row in matrix: row_len = len(row) new_row = row[:] if total_rows > row_len: # Row too short. Pad it. new_row += [0] * (total_rows - row_len) new_matrix += [new_row] while len(new_matrix) < total_rows: new_matrix += [[0] * total_rows] return new_matrix def compute(self, cost_matrix): """ Compute the indexes for the lowest-cost pairings between rows and columns in the database. Returns a list of (row, column) tuples that can be used to traverse the matrix. :Parameters: cost_matrix : list of lists The cost matrix. If this cost matrix is not square, it will be padded with zeros, via a call to ``pad_matrix()``. (This method does *not* modify the caller's matrix. It operates on a copy of the matrix.) **WARNING**: This code handles square and rectangular matrices. It does *not* handle irregular matrices. :rtype: list :return: A list of ``(row, column)`` tuples that describe the lowest cost path through the matrix """ self.C = self.pad_matrix(cost_matrix) self.n = len(self.C) self.original_length = len(cost_matrix) self.original_width = len(cost_matrix[0]) self.row_covered = [False for i in range(self.n)] self.col_covered = [False for i in range(self.n)] self.Z0_r = 0 self.Z0_c = 0 self.path = self.__make_matrix(self.n * 2, 0) self.marked = self.__make_matrix(self.n, 0) done = False step = 1 steps = { 1: self.__step1, 2: self.__step2, 3: self.__step3, 4: self.__step4, 5: self.__step5, 6: self.__step6 } while not done: try: func = steps[step] step = func() except KeyError: done = True # Look for the starred columns results = [] for i in range(self.original_length): for j in range(self.original_width): if self.marked[i][j] == 1: results += [(i, j)] return results def __copy_matrix(self, matrix): """Return an exact copy of the supplied matrix""" return copy.deepcopy(matrix) def __make_matrix(self, n, val): """Create an *n*x*n* matrix, populating it with the specific value.""" matrix = [] for i in range(n): matrix += [[val for j in range(n)]] return matrix def __step1(self): """ For each row of the matrix, find the smallest element and subtract it from every element in its row. Go to Step 2. """ C = self.C n = self.n for i in range(n): minval = min(self.C[i]) # Find the minimum value for this row and subtract that minimum # from every element in the row. for j in range(n): self.C[i][j] -= minval return 2 def __step2(self): """ Find a zero (Z) in the resulting matrix. If there is no starred zero in its row or column, star Z. Repeat for each element in the matrix. Go to Step 3. """ n = self.n for i in range(n): for j in range(n): if (self.C[i][j] == 0) and \ (not self.col_covered[j]) and \ (not self.row_covered[i]): self.marked[i][j] = 1 self.col_covered[j] = True self.row_covered[i] = True self.__clear_covers() return 3 def __step3(self): """ Cover each column containing a starred zero. If K columns are covered, the starred zeros describe a complete set of unique assignments. In this case, Go to DONE, otherwise, Go to Step 4. """ n = self.n count = 0 for i in range(n): for j in range(n): if self.marked[i][j] == 1: self.col_covered[j] = True count += 1 if count >= n: step = 7 # done else: step = 4 return step def __step4(self): """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ step = 0 done = False row = -1 col = -1 star_col = -1 while not done: (row, col) = self.__find_a_zero() if row < 0: done = True step = 6 else: self.marked[row][col] = 2 star_col = self.__find_star_in_row(row) if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step def __step5(self): """ Construct a series of alternating primed and starred zeros as follows. Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one). Continue until the series terminates at a primed zero that has no starred zero in its column. Unstar each starred zero of the series, star each primed zero of the series, erase all primes and uncover every line in the matrix. Return to Step 3 """ count = 0 path = self.path path[count][0] = self.Z0_r path[count][1] = self.Z0_c done = False while not done: row = self.__find_star_in_col(path[count][1]) if row >= 0: count += 1 path[count][0] = row path[count][1] = path[count - 1][1] else: done = True if not done: col = self.__find_prime_in_row(path[count][0]) count += 1 path[count][0] = path[count - 1][0] path[count][1] = col self.__convert_path(path, count) self.__clear_covers() self.__erase_primes() return 3 def __step6(self): """ Add the value found in Step 4 to every element of each covered row, and subtract it from every element of each uncovered column. Return to Step 4 without altering any stars, primes, or covered lines. """ minval = self.__find_smallest() for i in range(self.n): for j in range(self.n): if self.row_covered[i]: self.C[i][j] += minval if not self.col_covered[j]: self.C[i][j] -= minval return 4 def __find_smallest(self): """Find the smallest uncovered value in the matrix.""" minval = 2e9 # sys.maxint for i in range(self.n): for j in range(self.n): if (not self.row_covered[i]) and (not self.col_covered[j]): if minval > self.C[i][j]: minval = self.C[i][j] return minval def __find_a_zero(self): """Find the first uncovered element with value 0""" row = -1 col = -1 i = 0 n = self.n done = False while not done: j = 0 while True: if (self.C[i][j] == 0) and \ (not self.row_covered[i]) and \ (not self.col_covered[j]): row = i col = j done = True j += 1 if j >= n: break i += 1 if i >= n: done = True return (row, col) def __find_star_in_row(self, row): """ Find the first starred element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break return col def __find_star_in_col(self, col): """ Find the first starred element in the specified row. Returns the row index, or -1 if no starred element was found. """ row = -1 for i in range(self.n): if self.marked[i][col] == 1: row = i break return row def __find_prime_in_row(self, row): """ Find the first prime element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 2: col = j break return col def __convert_path(self, path, count): for i in range(count + 1): if self.marked[path[i][0]][path[i][1]] == 1: self.marked[path[i][0]][path[i][1]] = 0 else: self.marked[path[i][0]][path[i][1]] = 1 def __clear_covers(self): """Clear all covered matrix cells""" for i in range(self.n): self.row_covered[i] = False self.col_covered[i] = False def __erase_primes(self): """Erase all prime markings""" for i in range(self.n): for j in range(self.n): if self.marked[i][j] == 2: self.marked[i][j] = 0 def make_cost_matrix(profit_matrix, inversion_function): """ Create a cost matrix from a profit matrix by calling 'inversion_function' to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit. This is a static method. Call it like this: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x) :Parameters: profit_matrix : list of lists The matrix to convert from a profit to a cost matrix inversion_function : function The function to use to invert each entry in the profit matrix :rtype: list of lists :return: The converted matrix """ cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix