#!/usr/bin/env bash set -xe # Usage:CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${batch_size} ${fp_item} ${max_epoch} ${model_name} python="python3.7" # Parameter description function _set_params(){ run_mode=${1:-"sp"} # sp|mp batch_size=${2:-"2"} fp_item=${3:-"fp32"} # fp32|fp16 max_epoch=${4:-"1"} model_item=${5:-"model_item"} run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # 添加日志解析需要的参数 base_batch_size=${batch_size} mission_name="目标检测" direction_id="0" ips_unit="images/s" skip_steps=10 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填) keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填) index="1" model_name=${model_item}_bs${batch_size}_${fp_item} device=${CUDA_VISIBLE_DEVICES//,/ } arr=(${device}) num_gpu_devices=${#arr[*]} log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices} } function _train(){ echo "Train on ${num_gpu_devices} GPUs" echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size" # set runtime params set_optimizer_lr_sp=" " set_optimizer_lr_mp=" " # parse model_item case ${model_item} in faster_rcnn) model_yml="benchmark/configs/faster_rcnn_r50_fpn_1x_coco.yml" set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;; fcos) model_yml="configs/fcos/fcos_r50_fpn_1x_coco.yml" set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;; deformable_detr) model_yml="configs/deformable_detr/deformable_detr_r50_1x_coco.yml" ;; gfl) model_yml="configs/gfl/gfl_r50_fpn_1x_coco.yml" set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;; hrnet) model_yml="configs/keypoint/hrnet/hrnet_w32_256x192.yml" ;; higherhrnet) model_yml="configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml" ;; solov2) model_yml="configs/solov2/solov2_r50_fpn_1x_coco.yml" ;; jde) model_yml="configs/mot/jde/jde_darknet53_30e_1088x608.yml" ;; fairmot) model_yml="configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml" ;; *) echo "Undefined model_item"; exit 1; esac set_batch_size="TrainReader.batch_size=${batch_size}" set_max_epoch="epoch=${max_epoch}" set_log_iter="log_iter=1" if [ ${fp_item} = "fp16" ]; then set_fp_item="--fp16" else set_fp_item=" " fi case ${run_mode} in sp) train_cmd="${python} -u tools/train.py -c ${model_yml} ${set_fp_item} \ -o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_sp}" ;; mp) rm -rf mylog train_cmd="${python} -m paddle.distributed.launch --log_dir=./mylog \ --gpus=${CUDA_VISIBLE_DEVICES} tools/train.py -c ${model_yml} ${set_fp_item} \ -o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_mp}" log_parse_file="mylog/workerlog.0" ;; *) echo "choose run_mode(sp or mp)"; exit 1; esac timeout 15m ${train_cmd} > ${log_file} 2>&1 if [ $? -ne 0 ];then echo -e "${train_cmd}, FAIL" export job_fail_flag=1 else echo -e "${train_cmd}, SUCCESS" export job_fail_flag=0 fi kill -9 `ps -ef|grep 'python'|awk '{print $2}'` if [ $run_mode = "mp" -a -d mylog ]; then rm ${log_file} cp mylog/workerlog.0 ${log_file} fi } source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开 _set_params $@ # _train # 如果只想产出训练log,不解析,可取消注释 _run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开