简体中文 | [English](README.md) # VisDrone-DET 检测模型 PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)。 | 模型 | COCOAPI mAPval
0.5:0.95 | COCOAPI mAPval
0.5 | COCOAPI mAPtest_dev
0.5:0.95 | COCOAPI mAPtest_dev
0.5 | MatlabAPI mAPtest_dev
0.5:0.95 | MatlabAPI mAPtest_dev
0.5 | 下载 | 配置文件 | |:---------|:------:|:------:| :----: | :------:| :------: | :------:| :----: | :------:| |PP-YOLOE-s| 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_80e_visdrone.yml) | |PP-YOLOE-l| 29.8 | 48.3 | 23.0 | 38.6 | 27.29 | 45.52 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_80e_visdrone.yml) | **注意:** - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。 - 具体使用教程请参考[ppyoloe](../configs/ppyoloe#getting-start)。 ## 引用 ``` @ARTICLE{9573394, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detection and Tracking Meet Drones Challenge}, year={2021}, volume={}, number={}, pages={1-1}, doi={10.1109/TPAMI.2021.3119563} } ```