# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 0.33 # save_models depth multiple width_multiple: 0.50 # layer channel multiple anchors: 3 # AutoAnchor evolves 3 anchors per P output layer # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2 [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 [ -1, 3, C3, [ 128 ] ], [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 [ -1, 6, C3, [ 256 ] ], [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 [ -1, 9, C3, [ 512 ] ], [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 [ -1, 3, C3, [ 1024 ] ], [ -1, 1, SPPF, [ 1024, 5 ] ], # 9 ] # YOLOv5 v6.0 head with (P3, P4) outputs head: [ [ -1, 1, Conv, [ 512, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 [ -1, 3, C3, [ 512, False ] ], # 13 [ -1, 1, Conv, [ 256, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) [ -1, 1, Conv, [ 256, 3, 2 ] ], [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium) [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4) ]