# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from paddle import fluid from ppdet.core.workspace import register, serializable __all__ = ['GiouLoss'] @register @serializable class GiouLoss(object): ''' Generalized Intersection over Union, see https://arxiv.org/abs/1902.09630 Args: loss_weight (float): diou loss weight, default as 10 in faster-rcnn is_cls_agnostic (bool): flag of class-agnostic num_classes (int): class num do_average (bool): whether to average the loss use_class_weight(bool): whether to use class weight ''' __shared__ = ['num_classes'] def __init__(self, loss_weight=10., is_cls_agnostic=False, num_classes=81, do_average=True, use_class_weight=True): super(GiouLoss, self).__init__() self.loss_weight = loss_weight self.is_cls_agnostic = is_cls_agnostic self.num_classes = num_classes self.do_average = do_average self.class_weight = 2 if is_cls_agnostic else num_classes self.use_class_weight = use_class_weight # deltas: NxMx4 def bbox_transform(self, deltas, weights): wx, wy, ww, wh = weights deltas = fluid.layers.reshape(deltas, shape=(0, -1, 4)) dx = fluid.layers.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx dy = fluid.layers.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy dw = fluid.layers.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww dh = fluid.layers.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh dw = fluid.layers.clip(dw, -1.e10, np.log(1000. / 16)) dh = fluid.layers.clip(dh, -1.e10, np.log(1000. / 16)) pred_ctr_x = dx pred_ctr_y = dy pred_w = fluid.layers.exp(dw) pred_h = fluid.layers.exp(dh) x1 = pred_ctr_x - 0.5 * pred_w y1 = pred_ctr_y - 0.5 * pred_h x2 = pred_ctr_x + 0.5 * pred_w y2 = pred_ctr_y + 0.5 * pred_h x1 = fluid.layers.reshape(x1, shape=(-1, )) y1 = fluid.layers.reshape(y1, shape=(-1, )) x2 = fluid.layers.reshape(x2, shape=(-1, )) y2 = fluid.layers.reshape(y2, shape=(-1, )) return x1, y1, x2, y2 def __call__(self, x, y, inside_weight=None, outside_weight=None, bbox_reg_weight=[0.1, 0.1, 0.2, 0.2], loc_reweight=None, use_transform=True): eps = 1.e-10 if use_transform: x1, y1, x2, y2 = self.bbox_transform(x, bbox_reg_weight) x1g, y1g, x2g, y2g = self.bbox_transform(y, bbox_reg_weight) else: x1, y1, x2, y2 = fluid.layers.split(x, num_or_sections=4, dim=1) x1g, y1g, x2g, y2g = fluid.layers.split(y, num_or_sections=4, dim=1) x2 = fluid.layers.elementwise_max(x1, x2) y2 = fluid.layers.elementwise_max(y1, y2) xkis1 = fluid.layers.elementwise_max(x1, x1g) ykis1 = fluid.layers.elementwise_max(y1, y1g) xkis2 = fluid.layers.elementwise_min(x2, x2g) ykis2 = fluid.layers.elementwise_min(y2, y2g) xc1 = fluid.layers.elementwise_min(x1, x1g) yc1 = fluid.layers.elementwise_min(y1, y1g) xc2 = fluid.layers.elementwise_max(x2, x2g) yc2 = fluid.layers.elementwise_max(y2, y2g) intsctk = (xkis2 - xkis1) * (ykis2 - ykis1) intsctk = intsctk * fluid.layers.greater_than( xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1) unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g ) - intsctk + eps iouk = intsctk / unionk area_c = (xc2 - xc1) * (yc2 - yc1) + eps miouk = iouk - ((area_c - unionk) / area_c) iou_weights = 1 if inside_weight is not None and outside_weight is not None: inside_weight = fluid.layers.reshape(inside_weight, shape=(-1, 4)) outside_weight = fluid.layers.reshape(outside_weight, shape=(-1, 4)) inside_weight = fluid.layers.reduce_mean(inside_weight, dim=1) outside_weight = fluid.layers.reduce_mean(outside_weight, dim=1) iou_weights = inside_weight * outside_weight elif outside_weight is not None: iou_weights = outside_weight if loc_reweight is not None: loc_reweight = fluid.layers.reshape(loc_reweight, shape=(-1, 1)) loc_thresh = 0.9 giou = 1 - (1 - loc_thresh ) * miouk - loc_thresh * miouk * loc_reweight else: giou = 1 - miouk if self.do_average: miouk = fluid.layers.reduce_mean(giou * iou_weights) else: iou_distance = fluid.layers.elementwise_mul( giou, iou_weights, axis=0) miouk = fluid.layers.reduce_sum(iou_distance) if self.use_class_weight: miouk = miouk * self.class_weight return miouk * self.loss_weight