# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import Uniform from ppdet.core.workspace import register __all__ = ['Hourglass'] def kaiming_init(input, filter_size): fan_in = input.shape[1] std = (1.0 / (fan_in * filter_size * filter_size))**0.5 return Uniform(0. - std, std) def _conv_norm(x, k, out_dim, stride=1, pad=0, groups=None, with_bn=True, bn_act=None, ind=None, name=None): conv_name = "_conv" if ind is None else "_conv" + str(ind) bn_name = "_bn" if ind is None else "_bn" + str(ind) conv = fluid.layers.conv2d( input=x, filter_size=k, num_filters=out_dim, stride=stride, padding=pad, groups=groups, param_attr=ParamAttr( name=name + conv_name + "_weight", initializer=kaiming_init(x, k)), bias_attr=ParamAttr( name=name + conv_name + "_bias", initializer=kaiming_init(x, k)) if not with_bn else False, name=name + '_output') if with_bn: pattr = ParamAttr(name=name + bn_name + '_weight') battr = ParamAttr(name=name + bn_name + '_bias') out = fluid.layers.batch_norm( input=conv, act=bn_act, name=name + '_bn_output', param_attr=pattr, bias_attr=battr, moving_mean_name=name + bn_name + '_running_mean', moving_variance_name=name + bn_name + '_running_var') if with_bn else conv else: out = fluid.layers.relu(conv) return out def residual_block(x, out_dim, k=3, stride=1, name=None): p = (k - 1) // 2 conv1 = _conv_norm( x, k, out_dim, pad=p, stride=stride, bn_act='relu', ind=1, name=name) conv2 = _conv_norm(conv1, k, out_dim, pad=p, ind=2, name=name) skip = _conv_norm( x, 1, out_dim, stride=stride, name=name + '_skip') if stride != 1 or x.shape[1] != out_dim else x return fluid.layers.elementwise_add( x=skip, y=conv2, act='relu', name=name + "_add") def fire_block(x, out_dim, sr=2, stride=1, name=None): conv1 = _conv_norm(x, 1, out_dim // sr, ind=1, name=name) conv_1x1 = fluid.layers.conv2d( conv1, filter_size=1, num_filters=out_dim // 2, stride=stride, param_attr=ParamAttr( name=name + "_conv_1x1_weight", initializer=kaiming_init(conv1, 1)), bias_attr=False, name=name + '_conv_1x1') conv_3x3 = fluid.layers.conv2d( conv1, filter_size=3, num_filters=out_dim // 2, stride=stride, padding=1, groups=out_dim // sr, param_attr=ParamAttr( name=name + "_conv_3x3_weight", initializer=kaiming_init(conv1, 3)), bias_attr=False, name=name + '_conv_3x3', use_cudnn=False) conv2 = fluid.layers.concat( [conv_1x1, conv_3x3], axis=1, name=name + '_conv2') pattr = ParamAttr(name=name + '_bn2_weight') battr = ParamAttr(name=name + '_bn2_bias') bn2 = fluid.layers.batch_norm( input=conv2, name=name + '_bn2', param_attr=pattr, bias_attr=battr, moving_mean_name=name + '_bn2_running_mean', moving_variance_name=name + '_bn2_running_var') if stride == 1 and x.shape[1] == out_dim: return fluid.layers.elementwise_add( x=bn2, y=x, act='relu', name=name + "_add_relu") else: return fluid.layers.relu(bn2, name="_relu") def make_layer(x, in_dim, out_dim, modules, block, name=None): layers = block(x, out_dim, name=name + '_0') for i in range(1, modules): layers = block(layers, out_dim, name=name + '_' + str(i)) return layers def make_hg_layer(x, in_dim, out_dim, modules, block, name=None): layers = block(x, out_dim, stride=2, name=name + '_0') for i in range(1, modules): layers = block(layers, out_dim, name=name + '_' + str(i)) return layers def make_layer_revr(x, in_dim, out_dim, modules, block, name=None): for i in range(modules - 1): x = block(x, in_dim, name=name + '_' + str(i)) layers = block(x, out_dim, name=name + '_' + str(modules - 1)) return layers def make_unpool_layer(x, dim, name=None): pattr = ParamAttr(name=name + '_weight', initializer=kaiming_init(x, 4)) battr = ParamAttr(name=name + '_bias', initializer=kaiming_init(x, 4)) layer = fluid.layers.conv2d_transpose( input=x, num_filters=dim, filter_size=4, stride=2, padding=1, param_attr=pattr, bias_attr=battr) return layer @register class Hourglass(object): """ Hourglass Network, see https://arxiv.org/abs/1603.06937 Args: stack (int): stack of hourglass, 2 by default dims (list): dims of each level in hg_module modules (list): num of modules in each level """ __shared__ = ['stack'] def __init__(self, stack=2, dims=[256, 256, 384, 384, 512], modules=[2, 2, 2, 2, 4], block_name='fire'): super(Hourglass, self).__init__() self.stack = stack assert len(dims) == len(modules), \ "Expected len of dims equal to len of modules, Receiced len of "\ "dims: {}, len of modules: {}".format(len(dims), len(modules)) self.dims = dims self.modules = modules self.num_level = len(dims) - 1 block_dict = {'fire': fire_block} self.block = block_dict[block_name] def __call__(self, input, name='hg'): inter = self.pre(input, name + '_pre') cnvs = [] for ind in range(self.stack): hg = self.hg_module( inter, self.num_level, self.dims, self.modules, name=name + '_hgs_' + str(ind)) cnv = _conv_norm( hg, 3, 256, bn_act='relu', pad=1, name=name + '_cnvs_' + str(ind)) cnvs.append(cnv) if ind < self.stack - 1: inter = _conv_norm( inter, 1, 256, name=name + '_inters__' + str(ind)) + _conv_norm( cnv, 1, 256, name=name + '_cnvs__' + str(ind)) inter = fluid.layers.relu(inter) inter = residual_block( inter, 256, name=name + '_inters_' + str(ind)) return cnvs def pre(self, x, name=None): conv = _conv_norm( x, 7, 128, stride=2, pad=3, bn_act='relu', name=name + '_0') res1 = residual_block(conv, 256, stride=2, name=name + '_1') res2 = residual_block(res1, 256, stride=2, name=name + '_2') return res2 def hg_module(self, x, n=4, dims=[256, 256, 384, 384, 512], modules=[2, 2, 2, 2, 4], make_up_layer=make_layer, make_hg_layer=make_hg_layer, make_low_layer=make_layer, make_hg_layer_revr=make_layer_revr, make_unpool_layer=make_unpool_layer, name=None): curr_mod = modules[0] next_mod = modules[1] curr_dim = dims[0] next_dim = dims[1] up1 = make_up_layer( x, curr_dim, curr_dim, curr_mod, self.block, name=name + '_up1') max1 = x low1 = make_hg_layer( max1, curr_dim, next_dim, curr_mod, self.block, name=name + '_low1') low2 = self.hg_module( low1, n - 1, dims[1:], modules[1:], make_up_layer=make_up_layer, make_hg_layer=make_hg_layer, make_low_layer=make_low_layer, make_hg_layer_revr=make_hg_layer_revr, make_unpool_layer=make_unpool_layer, name=name + '_low2') if n > 1 else make_low_layer( low1, next_dim, next_dim, next_mod, self.block, name=name + '_low2') low3 = make_hg_layer_revr( low2, next_dim, curr_dim, curr_mod, self.block, name=name + '_low3') up2 = make_unpool_layer(low3, curr_dim, name=name + '_up2') merg = fluid.layers.elementwise_add(x=up1, y=up2, name=name + '_merg') return merg