# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict from paddle import fluid from ppdet.experimental import mixed_precision_global_state from ppdet.core.workspace import register __all__ = ['TTFNet'] @register class TTFNet(object): """ TTFNet network, see https://arxiv.org/abs/1909.00700 Args: backbone (object): backbone instance ttf_head (object): `TTFHead` instance num_classes (int): the number of classes, 80 by default. """ __category__ = 'architecture' __inject__ = ['backbone', 'ttf_head'] __shared__ = ['num_classes'] def __init__(self, backbone, ttf_head='TTFHead', num_classes=80): super(TTFNet, self).__init__() self.backbone = backbone self.ttf_head = ttf_head self.num_classes = num_classes def build(self, feed_vars, mode='train', exclude_nms=False): im = feed_vars['image'] mixed_precision_enabled = mixed_precision_global_state() is not None # cast inputs to FP16 if mixed_precision_enabled: im = fluid.layers.cast(im, 'float16') body_feats = self.backbone(im) if isinstance(body_feats, OrderedDict): body_feat_names = list(body_feats.keys()) body_feats = [body_feats[name] for name in body_feat_names] # cast features back to FP32 if mixed_precision_enabled: body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats] predict_hm, predict_wh = self.ttf_head.get_output( body_feats, 'ttf_head', is_test=mode == 'test') if mode == 'train': heatmap = feed_vars['ttf_heatmap'] box_target = feed_vars['ttf_box_target'] reg_weight = feed_vars['ttf_reg_weight'] loss = self.ttf_head.get_loss(predict_hm, predict_wh, heatmap, box_target, reg_weight) total_loss = fluid.layers.sum(list(loss.values())) loss.update({'loss': total_loss}) return loss else: results = self.ttf_head.get_bboxes(predict_hm, predict_wh, feed_vars['scale_factor']) return results def _inputs_def(self, image_shape, downsample): im_shape = [None] + image_shape H, W = im_shape[2:] target_h = None if H is None else H // downsample target_w = None if W is None else W // downsample # yapf: disable inputs_def = { 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0}, 'scale_factor': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 0}, 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0}, 'ttf_heatmap': {'shape': [None, self.num_classes, target_h, target_w], 'dtype': 'float32', 'lod_level': 0}, 'ttf_box_target': {'shape': [None, 4, target_h, target_w], 'dtype': 'float32', 'lod_level': 0}, 'ttf_reg_weight': {'shape': [None, 1, target_h, target_w], 'dtype': 'float32', 'lod_level': 0}, } # yapf: enable return inputs_def def build_inputs( self, image_shape=[3, None, None], fields=[ 'image', 'ttf_heatmap', 'ttf_box_target', 'ttf_reg_weight' ], # for train use_dataloader=True, iterable=False, downsample=4): inputs_def = self._inputs_def(image_shape, downsample) feed_vars = OrderedDict([(key, fluid.data( name=key, shape=inputs_def[key]['shape'], dtype=inputs_def[key]['dtype'], lod_level=inputs_def[key]['lod_level'])) for key in fields]) loader = fluid.io.DataLoader.from_generator( feed_list=list(feed_vars.values()), capacity=16, use_double_buffer=True, iterable=iterable) if use_dataloader else None return feed_vars, loader def train(self, feed_vars): return self.build(feed_vars, mode='train') def eval(self, feed_vars): return self.build(feed_vars, mode='test') def test(self, feed_vars, exclude_nms=False): return self.build(feed_vars, mode='test', exclude_nms=exclude_nms)