123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Auto-batch utils
- """
- from copy import deepcopy
- import numpy as np
- import torch
- from utils.general import LOGGER, colorstr, emojis
- from utils.torch_utils import profile
- def check_train_batch_size(model, imgsz=640, amp=True):
- # Check YOLOv5 training batch size
- with torch.cuda.amp.autocast(amp):
- return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
- def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
- # Automatically estimate best batch size to use `fraction` of available CUDA memory
- # Usage:
- # import torch
- # from utils.autobatch import autobatch
- # save_models = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
- # print(autobatch(save_models))
- # Check device
- prefix = colorstr('AutoBatch: ')
- LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
- device = next(model.parameters()).device # get save_models device
- if device.type == 'cpu':
- LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
- return batch_size
- # Inspect CUDA memory
- gb = 1 << 30 # bytes to GiB (1024 ** 3)
- d = str(device).upper() # 'CUDA:0'
- properties = torch.cuda.get_device_properties(device) # device properties
- t = properties.total_memory / gb # GiB total
- r = torch.cuda.memory_reserved(device) / gb # GiB reserved
- a = torch.cuda.memory_allocated(device) / gb # GiB allocated
- f = t - (r + a) # GiB free
- LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
- # Profile batch sizes
- batch_sizes = [1, 2, 4, 8, 16]
- try:
- img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
- results = profile(img, model, n=3, device=device)
- except Exception as e:
- LOGGER.warning(f'{prefix}{e}')
- # Fit a solution
- y = [x[2] for x in results if x] # memory [2]
- p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
- b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
- if None in results: # some sizes failed
- i = results.index(None) # first fail index
- if b >= batch_sizes[i]: # y intercept above failure point
- b = batch_sizes[max(i - 1, 0)] # select prior safe point
- fraction = np.polyval(p, b) / t # actual fraction predicted
- LOGGER.info(emojis(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅'))
- return b
|