123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Experimental modules
- """
- import math
- import numpy as np
- import torch
- import torch.nn as nn
- from dependence.yolov5.models.common import Conv
- from dependence.yolov5.utils.downloads import attempt_download
- class Sum(nn.Module):
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
- def __init__(self, n, weight=False): # n: number of inputs
- super().__init__()
- self.weight = weight # apply weights boolean
- self.iter = range(n - 1) # iter object
- if weight:
- self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
- def forward(self, x):
- y = x[0] # no weight
- if self.weight:
- w = torch.sigmoid(self.w) * 2
- for i in self.iter:
- y = y + x[i + 1] * w[i]
- else:
- for i in self.iter:
- y = y + x[i + 1]
- return y
- class MixConv2d(nn.Module):
- # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
- super().__init__()
- n = len(k) # number of convolutions
- if equal_ch: # equal c_ per group
- i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
- c_ = [(i == g).sum() for g in range(n)] # intermediate channels
- else: # equal weight.numel() per group
- b = [c2] + [0] * n
- a = np.eye(n + 1, n, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
- self.m = nn.ModuleList([
- nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU()
- def forward(self, x):
- return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
- class Ensemble(nn.ModuleList):
- # Ensemble of models
- def __init__(self):
- super().__init__()
- def forward(self, x, augment=False, profile=False, visualize=False):
- y = [module(x, augment, profile, visualize)[0] for module in self]
- # y = torch.stack(y).max(0)[0] # max ensemble
- # y = torch.stack(y).mean(0) # mean ensemble
- y = torch.cat(y, 1) # nms ensemble
- return y, None # inference, train output
- def attempt_load(weights, device=None, inplace=True, fuse=True):
- # Loads an ensemble of models weights=[a,b,c] or a single save_models weights=[a] or weights=a
- from dependence.yolov5.models.yolo import Detect, Model
- model = Ensemble()
- for w in weights if isinstance(weights, list) else [weights]:
- ckpt = torch.load(attempt_download(w), map_location='cpu') # load
- ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 save_models
- model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused save_models in eval mode
- # Compatibility updates
- for m in model.modules():
- t = type(m)
- if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
- m.inplace = inplace # torch 1.7.0 compatibility
- if t is Detect and not isinstance(m.anchor_grid, list):
- delattr(m, 'anchor_grid')
- setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
- elif t is Conv:
- m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
- elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
- if len(model) == 1:
- return model[-1] # return save_models
- print(f'Ensemble created with {weights}\n')
- for k in 'names', 'nc', 'yaml':
- setattr(model, k, getattr(model[0], k))
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
- assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
- return model # return ensemble
|