123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- sys.path.insert(0, parent_path)
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('ppdet.anchor_cluster')
- from scipy.cluster.vq import kmeans
- import numpy as np
- from tqdm import tqdm
- from ppdet.utils.cli import ArgsParser
- from ppdet.utils.check import check_gpu, check_version, check_config
- from ppdet.core.workspace import load_config, merge_config
- class BaseAnchorCluster(object):
- def __init__(self, n, cache_path, cache, verbose=True):
- """
- Base Anchor Cluster
- Args:
- n (int): number of clusters
- cache_path (str): cache directory path
- cache (bool): whether using cache
- verbose (bool): whether print results
- """
- super(BaseAnchorCluster, self).__init__()
- self.n = n
- self.cache_path = cache_path
- self.cache = cache
- self.verbose = verbose
- def print_result(self, centers):
- raise NotImplementedError('%s.print_result is not available' %
- self.__class__.__name__)
- def get_whs(self):
- whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
- shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
- if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
- shapes_cache_path):
- self.whs = np.load(whs_cache_path)
- self.shapes = np.load(shapes_cache_path)
- return self.whs, self.shapes
- whs = np.zeros((0, 2))
- shapes = np.zeros((0, 2))
- self.dataset.parse_dataset()
- roidbs = self.dataset.roidbs
- for rec in tqdm(roidbs):
- h, w = rec['h'], rec['w']
- bbox = rec['gt_bbox']
- wh = bbox[:, 2:4] - bbox[:, 0:2] + 1
- wh = wh / np.array([[w, h]])
- shape = np.ones_like(wh) * np.array([[w, h]])
- whs = np.vstack((whs, wh))
- shapes = np.vstack((shapes, shape))
- if self.cache:
- os.makedirs(self.cache_path, exist_ok=True)
- np.save(whs_cache_path, whs)
- np.save(shapes_cache_path, shapes)
- self.whs = whs
- self.shapes = shapes
- return self.whs, self.shapes
- def calc_anchors(self):
- raise NotImplementedError('%s.calc_anchors is not available' %
- self.__class__.__name__)
- def __call__(self):
- self.get_whs()
- centers = self.calc_anchors()
- if self.verbose:
- self.print_result(centers)
- return centers
- class YOLOv2AnchorCluster(BaseAnchorCluster):
- def __init__(self,
- n,
- dataset,
- size,
- cache_path,
- cache,
- iters=1000,
- verbose=True):
- super(YOLOv2AnchorCluster, self).__init__(
- n, cache_path, cache, verbose=verbose)
- """
- YOLOv2 Anchor Cluster
- The code is based on https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
- Args:
- n (int): number of clusters
- dataset (DataSet): DataSet instance, VOC or COCO
- size (list): [w, h]
- cache_path (str): cache directory path
- cache (bool): whether using cache
- iters (int): kmeans algorithm iters
- verbose (bool): whether print results
- """
- self.dataset = dataset
- self.size = size
- self.iters = iters
- def print_result(self, centers):
- logger.info('%d anchor cluster result: [w, h]' % self.n)
- for w, h in centers:
- logger.info('[%d, %d]' % (round(w), round(h)))
- def metric(self, whs, centers):
- wh1 = whs[:, None]
- wh2 = centers[None]
- inter = np.minimum(wh1, wh2).prod(2)
- return inter / (wh1.prod(2) + wh2.prod(2) - inter)
- def kmeans_expectation(self, whs, centers, assignments):
- dist = self.metric(whs, centers)
- new_assignments = dist.argmax(1)
- converged = (new_assignments == assignments).all()
- return converged, new_assignments
- def kmeans_maximizations(self, whs, centers, assignments):
- new_centers = np.zeros_like(centers)
- for i in range(centers.shape[0]):
- mask = (assignments == i)
- if mask.sum():
- new_centers[i, :] = whs[mask].mean(0)
- return new_centers
- def calc_anchors(self):
- self.whs = self.whs * np.array([self.size])
- # random select k centers
- whs, n, iters = self.whs, self.n, self.iters
- logger.info('Running kmeans for %d anchors on %d points...' %
- (n, len(whs)))
- idx = np.random.choice(whs.shape[0], size=n, replace=False)
- centers = whs[idx]
- assignments = np.zeros(whs.shape[0:1]) * -1
- # kmeans
- if n == 1:
- return self.kmeans_maximizations(whs, centers, assignments)
- pbar = tqdm(range(iters), desc='Cluster anchors with k-means algorithm')
- for _ in pbar:
- # E step
- converged, assignments = self.kmeans_expectation(whs, centers,
- assignments)
- if converged:
- logger.info('kmeans algorithm has converged')
- break
- # M step
- centers = self.kmeans_maximizations(whs, centers, assignments)
- ious = self.metric(whs, centers)
- pbar.desc = 'avg_iou: %.4f' % (ious.max(1).mean())
- centers = sorted(centers, key=lambda x: x[0] * x[1])
- return centers
- def main():
- parser = ArgsParser()
- parser.add_argument(
- '--n', '-n', default=9, type=int, help='num of clusters')
- parser.add_argument(
- '--iters',
- '-i',
- default=1000,
- type=int,
- help='num of iterations for kmeans')
- parser.add_argument(
- '--verbose', '-v', default=True, type=bool, help='whether print result')
- parser.add_argument(
- '--size',
- '-s',
- default=None,
- type=str,
- help='image size: w,h, using comma as delimiter')
- parser.add_argument(
- '--method',
- '-m',
- default='v2',
- type=str,
- help='cluster method, v2 is only supported now')
- parser.add_argument(
- '--cache_path', default='cache', type=str, help='cache path')
- parser.add_argument(
- '--cache', action='store_true', help='whether use cache')
- FLAGS = parser.parse_args()
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # check if paddlepaddle version is satisfied
- check_version()
- # get dataset
- dataset = cfg['TrainDataset']
- if FLAGS.size:
- if ',' in FLAGS.size:
- size = list(map(int, FLAGS.size.split(',')))
- assert len(size) == 2, "the format of size is incorrect"
- else:
- size = int(FLAGS.size)
- size = [size, size]
- elif 'inputs_def' in cfg['TestReader'] and 'image_shape' in cfg[
- 'TestReader']['inputs_def']:
- size = cfg['TestReader']['inputs_def']['image_shape'][1:]
- else:
- raise ValueError('size is not specified')
- if FLAGS.method == 'v2':
- cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
- FLAGS.cache, FLAGS.iters, FLAGS.verbose)
- else:
- raise ValueError('cluster method: %s is not supported' % FLAGS.method)
- anchors = cluster()
- if __name__ == "__main__":
- main()
|