123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import glob
- import numpy as np
- from PIL import Image
- from paddle import fluid
- from paddleslim.prune import Pruner
- from paddleslim.analysis import flops
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.utils.eval_utils import parse_fetches
- from ppdet.utils.cli import ArgsParser
- from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
- from ppdet.utils.visualizer import visualize_results
- import ppdet.utils.checkpoint as checkpoint
- from ppdet.data.reader import create_reader
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- def get_save_image_name(output_dir, image_path):
- """
- Get save image name from source image path.
- """
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- image_name = os.path.split(image_path)[-1]
- name, ext = os.path.splitext(image_name)
- return os.path.join(output_dir, "{}".format(name)) + ext
- def get_test_images(infer_dir, infer_img):
- """
- Get image path list in TEST mode
- """
- assert infer_img is not None or infer_dir is not None, \
- "--infer_img or --infer_dir should be set"
- assert infer_img is None or os.path.isfile(infer_img), \
- "{} is not a file".format(infer_img)
- assert infer_dir is None or os.path.isdir(infer_dir), \
- "{} is not a directory".format(infer_dir)
- # infer_img has a higher priority
- if infer_img and os.path.isfile(infer_img):
- return [infer_img]
- images = set()
- infer_dir = os.path.abspath(infer_dir)
- assert os.path.isdir(infer_dir), \
- "infer_dir {} is not a directory".format(infer_dir)
- exts = ['jpg', 'jpeg', 'png', 'bmp']
- exts += [ext.upper() for ext in exts]
- for ext in exts:
- images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
- images = list(images)
- assert len(images) > 0, "no image found in {}".format(infer_dir)
- logger.info("Found {} inference images in total.".format(len(images)))
- return images
- def main():
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # check if paddlepaddle version is satisfied
- check_version()
- main_arch = cfg.architecture
- dataset = cfg.TestReader['dataset']
- test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
- dataset.set_images(test_images)
- place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
- exe = fluid.Executor(place)
- model = create(main_arch)
- startup_prog = fluid.Program()
- infer_prog = fluid.Program()
- with fluid.program_guard(infer_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['TestReader']['inputs_def']
- inputs_def['iterable'] = True
- feed_vars, loader = model.build_inputs(**inputs_def)
- test_fetches = model.test(feed_vars)
- infer_prog = infer_prog.clone(True)
- pruned_params = FLAGS.pruned_params
- assert (
- FLAGS.pruned_params is not None
- ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
- pruned_params = FLAGS.pruned_params.strip().split(",")
- logger.info("pruned params: {}".format(pruned_params))
- pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
- logger.info("pruned ratios: {}".format(pruned_ratios))
- assert (len(pruned_params) == len(pruned_ratios)
- ), "The length of pruned params and pruned ratios should be equal."
- assert (pruned_ratios > [0] * len(pruned_ratios) and
- pruned_ratios < [1] * len(pruned_ratios)
- ), "The elements of pruned ratios should be in range (0, 1)."
- base_flops = flops(infer_prog)
- pruner = Pruner()
- infer_prog, _, _ = pruner.prune(
- infer_prog,
- fluid.global_scope(),
- params=pruned_params,
- ratios=pruned_ratios,
- place=place,
- only_graph=True)
- pruned_flops = flops(infer_prog)
- logger.info("pruned FLOPS: {}".format(
- float(base_flops - pruned_flops) / base_flops))
- reader = create_reader(cfg.TestReader, devices_num=1)
- loader.set_sample_list_generator(reader, place)
- exe.run(startup_prog)
- if cfg.weights:
- checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)
- # parse infer fetches
- assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
- "unknown metric type {}".format(cfg.metric)
- extra_keys = []
- if cfg['metric'] in ['COCO', 'OID']:
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
- extra_keys = ['im_id', 'im_shape']
- keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)
- # parse dataset category
- if cfg.metric == 'COCO':
- from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
- if cfg.metric == 'OID':
- from ppdet.utils.oid_eval import bbox2out, get_category_info
- if cfg.metric == "VOC":
- from ppdet.utils.voc_eval import bbox2out, get_category_info
- if cfg.metric == "WIDERFACE":
- from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info
- anno_file = dataset.get_anno()
- with_background = dataset.with_background
- use_default_label = dataset.use_default_label
- clsid2catid, catid2name = get_category_info(anno_file, with_background,
- use_default_label)
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- imid2path = dataset.get_imid2path()
- for iter_id, data in enumerate(loader()):
- outs = exe.run(infer_prog,
- feed=data,
- fetch_list=values,
- return_numpy=False)
- res = {
- k: (np.array(v), v.recursive_sequence_lengths())
- for k, v in zip(keys, outs)
- }
- logger.info('Infer iter {}'.format(iter_id))
- bbox_results = None
- mask_results = None
- if 'bbox' in res:
- bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
- if 'mask' in res:
- mask_results = mask2out([res], clsid2catid,
- model.mask_head.resolution)
- # visualize result
- im_ids = res['im_id'][0]
- for im_id in im_ids:
- image_path = imid2path[int(im_id)]
- image = Image.open(image_path).convert('RGB')
- image = visualize_results(image,
- int(im_id), catid2name,
- FLAGS.draw_threshold, bbox_results,
- mask_results)
- save_name = get_save_image_name(FLAGS.output_dir, image_path)
- logger.info("Detection bbox results save in {}".format(save_name))
- image.save(save_name, quality=95)
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--infer_dir",
- type=str,
- default=None,
- help="Directory for images to perform inference on.")
- parser.add_argument(
- "--infer_img",
- type=str,
- default=None,
- help="Image path, has higher priority over --infer_dir")
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output",
- help="Directory for storing the output visualization files.")
- parser.add_argument(
- "--draw_threshold",
- type=float,
- default=0.5,
- help="Threshold to reserve the result for visualization.")
- parser.add_argument(
- "-p",
- "--pruned_params",
- default=None,
- type=str,
- help="The parameters to be pruned when calculating sensitivities.")
- parser.add_argument(
- "--pruned_ratios",
- default=None,
- type=str,
- help="The ratios pruned iteratively for each parameter when calculating sensitivities."
- )
- FLAGS = parser.parse_args()
- main()
|