123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- from ppdet.core.workspace import register, serializable
- from ppdet.utils.download import get_dataset_path
- @serializable
- class DataSet(object):
- """
- Dataset, e.g., coco, pascal voc
- Args:
- annotation (str): annotation file path
- image_dir (str): directory where image files are stored
- shuffle (bool): shuffle samples
- """
- def __init__(self,
- dataset_dir=None,
- image_dir=None,
- anno_path=None,
- sample_num=-1,
- with_background=True,
- use_default_label=False,
- **kwargs):
- super(DataSet, self).__init__()
- self.anno_path = anno_path
- self.image_dir = image_dir if image_dir is not None else ''
- self.dataset_dir = dataset_dir if dataset_dir is not None else ''
- self.sample_num = sample_num
- self.with_background = with_background
- self.use_default_label = use_default_label
- self.cname2cid = None
- self._imid2path = None
- def load_roidb_and_cname2cid(self):
- """load dataset"""
- raise NotImplementedError('%s.load_roidb_and_cname2cid not available' %
- (self.__class__.__name__))
- def get_roidb(self):
- if not self.roidbs:
- data_dir = get_dataset_path(self.dataset_dir, self.anno_path,
- self.image_dir)
- if data_dir:
- self.dataset_dir = data_dir
- self.load_roidb_and_cname2cid()
- return self.roidbs
- def get_cname2cid(self):
- if not self.cname2cid:
- self.load_roidb_and_cname2cid()
- return self.cname2cid
- def get_anno(self):
- if self.anno_path is None:
- return
- return os.path.join(self.dataset_dir, self.anno_path)
- def get_imid2path(self):
- return self._imid2path
- def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
- return f.lower().endswith(extensions)
- def _make_dataset(data_dir):
- data_dir = os.path.expanduser(data_dir)
- if not os.path.isdir(data_dir):
- raise ('{} should be a dir'.format(data_dir))
- images = []
- for root, _, fnames in sorted(os.walk(data_dir, followlinks=True)):
- for fname in sorted(fnames):
- file_path = os.path.join(root, fname)
- if _is_valid_file(file_path):
- images.append(file_path)
- return images
- @register
- @serializable
- class ImageFolder(DataSet):
- """
- Args:
- dataset_dir (str): root directory for dataset.
- image_dir(list|str): list of image folders or list of image files
- anno_path (str): annotation file path.
- samples (int): number of samples to load, -1 means all
- """
- def __init__(self,
- dataset_dir=None,
- image_dir=None,
- anno_path=None,
- sample_num=-1,
- with_background=True,
- use_default_label=False,
- **kwargs):
- super(ImageFolder, self).__init__(dataset_dir, image_dir, anno_path,
- sample_num, with_background,
- use_default_label)
- self.roidbs = None
- self._imid2path = {}
- def get_roidb(self):
- if not self.roidbs:
- self.roidbs = self._load_images()
- return self.roidbs
- def set_images(self, images):
- self.image_dir = images
- self.roidbs = self._load_images()
- def _parse(self):
- image_dir = self.image_dir
- if not isinstance(image_dir, Sequence):
- image_dir = [image_dir]
- images = []
- for im_dir in image_dir:
- if os.path.isdir(im_dir):
- im_dir = os.path.join(self.dataset_dir, im_dir)
- images.extend(_make_dataset(im_dir))
- elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
- images.append(im_dir)
- return images
- def _load_images(self):
- images = self._parse()
- ct = 0
- records = []
- for image in images:
- assert image != '' and os.path.isfile(image), \
- "Image {} not found".format(image)
- if self.sample_num > 0 and ct >= self.sample_num:
- break
- rec = {'im_id': np.array([ct]), 'im_file': image}
- self._imid2path[ct] = image
- ct += 1
- records.append(rec)
- assert len(records) > 0, "No image file found"
- return records
|