123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- from .dataset import DataSet
- from ppdet.core.workspace import register, serializable
- import logging
- logger = logging.getLogger(__name__)
- @register
- @serializable
- class COCODataSet(DataSet):
- """
- Load COCO records with annotations in json file 'anno_path'
- Args:
- dataset_dir (str): root directory for dataset.
- image_dir (str): directory for images.
- anno_path (str): json file path.
- sample_num (int): number of samples to load, -1 means all.
- with_background (bool): whether load background as a class.
- if True, total class number will be 81. default True.
- """
- def __init__(self,
- image_dir=None,
- anno_path=None,
- dataset_dir=None,
- sample_num=-1,
- with_background=True,
- load_semantic=False):
- super(COCODataSet, self).__init__(
- image_dir=image_dir,
- anno_path=anno_path,
- dataset_dir=dataset_dir,
- sample_num=sample_num,
- with_background=with_background)
- self.anno_path = anno_path
- self.sample_num = sample_num
- self.with_background = with_background
- # `roidbs` is list of dict whose structure is:
- # {
- # 'im_file': im_fname, # image file name
- # 'im_id': img_id, # image id
- # 'h': im_h, # height of image
- # 'w': im_w, # width
- # 'is_crowd': is_crowd,
- # 'gt_score': gt_score,
- # 'gt_class': gt_class,
- # 'gt_bbox': gt_bbox,
- # 'gt_poly': gt_poly,
- # }
- self.roidbs = None
- # a dict used to map category name to class id
- self.cname2cid = None
- self.load_image_only = False
- self.load_semantic = load_semantic
- def load_roidb_and_cname2cid(self):
- anno_path = os.path.join(self.dataset_dir, self.anno_path)
- image_dir = os.path.join(self.dataset_dir, self.image_dir)
- assert anno_path.endswith('.json'), \
- 'invalid coco annotation file: ' + anno_path
- from pycocotools.coco import COCO
- coco = COCO(anno_path)
- img_ids = coco.getImgIds()
- cat_ids = coco.getCatIds()
- records = []
- ct = 0
- # when with_background = True, mapping category to classid, like:
- # background:0, first_class:1, second_class:2, ...
- catid2clsid = dict({
- catid: i + int(self.with_background)
- for i, catid in enumerate(cat_ids)
- })
- cname2cid = dict({
- coco.loadCats(catid)[0]['name']: clsid
- for catid, clsid in catid2clsid.items()
- })
- if 'annotations' not in coco.dataset:
- self.load_image_only = True
- logger.warning('Annotation file: {} does not contains ground truth '
- 'and load image information only.'.format(anno_path))
- for img_id in img_ids:
- img_anno = coco.loadImgs([img_id])[0]
- im_fname = img_anno['file_name']
- im_w = float(img_anno['width'])
- im_h = float(img_anno['height'])
- im_path = os.path.join(image_dir,
- im_fname) if image_dir else im_fname
- if not os.path.exists(im_path):
- logger.warning('Illegal image file: {}, and it will be '
- 'ignored'.format(im_path))
- continue
- if im_w < 0 or im_h < 0:
- logger.warning('Illegal width: {} or height: {} in annotation, '
- 'and im_id: {} will be ignored'.format(
- im_w, im_h, img_id))
- continue
- coco_rec = {
- 'im_file': im_path,
- 'im_id': np.array([img_id]),
- 'h': im_h,
- 'w': im_w,
- }
- if not self.load_image_only:
- ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
- instances = coco.loadAnns(ins_anno_ids)
- bboxes = []
- for inst in instances:
- x, y, box_w, box_h = inst['bbox']
- x1 = max(0, x)
- y1 = max(0, y)
- x2 = min(im_w - 1, x1 + max(0, box_w - 1))
- y2 = min(im_h - 1, y1 + max(0, box_h - 1))
- if x2 >= x1 and y2 >= y1:
- inst['clean_bbox'] = [x1, y1, x2, y2]
- bboxes.append(inst)
- else:
- logger.warning(
- 'Found an invalid bbox in annotations: im_id: {}, '
- 'x1: {}, y1: {}, x2: {}, y2: {}.'.format(
- img_id, x1, y1, x2, y2))
- num_bbox = len(bboxes)
- if num_bbox <= 0:
- continue
- gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
- gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_score = np.ones((num_bbox, 1), dtype=np.float32)
- is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
- difficult = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_poly = [None] * num_bbox
- has_segmentation = False
- for i, box in enumerate(bboxes):
- catid = box['category_id']
- gt_class[i][0] = catid2clsid[catid]
- gt_bbox[i, :] = box['clean_bbox']
- is_crowd[i][0] = box['iscrowd']
- if 'segmentation' in box and box['segmentation']:
- gt_poly[i] = box['segmentation']
- has_segmentation = True
- if has_segmentation and not any(gt_poly):
- continue
- coco_rec.update({
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'gt_poly': gt_poly,
- })
- if self.load_semantic:
- seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
- 'train2017', im_fname[:-3] + 'png')
- coco_rec.update({'semantic': seg_path})
- logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
- im_path, img_id, im_h, im_w))
- records.append(coco_rec)
- ct += 1
- if self.sample_num > 0 and ct >= self.sample_num:
- break
- assert len(records) > 0, 'not found any coco record in %s' % (anno_path)
- logger.debug('{} samples in file {}'.format(ct, anno_path))
- self.roidbs, self.cname2cid = records, cname2cid
|