yolov3_mobilenet_v1.yml 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. architecture: YOLOv3
  2. use_gpu: true
  3. max_iters: 500000
  4. log_iter: 20
  5. save_dir: output
  6. snapshot_iter: 10000
  7. metric: COCO
  8. pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
  9. weights: output/yolov3_mobilenet_v1/model_final
  10. num_classes: 80
  11. use_fine_grained_loss: false
  12. YOLOv3:
  13. backbone: MobileNet
  14. yolo_head: YOLOv3Head
  15. MobileNet:
  16. norm_type: sync_bn
  17. norm_decay: 0.
  18. conv_group_scale: 1
  19. with_extra_blocks: false
  20. YOLOv3Head:
  21. anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  22. anchors: [[10, 13], [16, 30], [33, 23],
  23. [30, 61], [62, 45], [59, 119],
  24. [116, 90], [156, 198], [373, 326]]
  25. norm_decay: 0.
  26. yolo_loss: YOLOv3Loss
  27. nms:
  28. background_label: -1
  29. keep_top_k: 100
  30. nms_threshold: 0.45
  31. nms_top_k: 1000
  32. normalized: false
  33. score_threshold: 0.01
  34. YOLOv3Loss:
  35. ignore_thresh: 0.7
  36. label_smooth: true
  37. LearningRate:
  38. base_lr: 0.001
  39. schedulers:
  40. - !PiecewiseDecay
  41. gamma: 0.1
  42. milestones:
  43. - 400000
  44. - 450000
  45. - !LinearWarmup
  46. start_factor: 0.
  47. steps: 4000
  48. OptimizerBuilder:
  49. optimizer:
  50. momentum: 0.9
  51. type: Momentum
  52. regularizer:
  53. factor: 0.0005
  54. type: L2
  55. _READER_: 'yolov3_reader.yml'