123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- this code is based on https://github.com/open-mmlab/mmpose/mmpose/core/post_processing/post_transforms.py
- """
- import cv2
- import numpy as np
- class EvalAffine(object):
- def __init__(self, size, stride=64):
- super(EvalAffine, self).__init__()
- self.size = size
- self.stride = stride
- def __call__(self, image, im_info):
- s = self.size
- h, w, _ = image.shape
- trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False)
- image_resized = cv2.warpAffine(image, trans, size_resized)
- return image_resized, im_info
- def get_affine_mat_kernel(h, w, s, inv=False):
- if w < h:
- w_ = s
- h_ = int(np.ceil((s / w * h) / 64.) * 64)
- scale_w = w
- scale_h = h_ / w_ * w
- else:
- h_ = s
- w_ = int(np.ceil((s / h * w) / 64.) * 64)
- scale_h = h
- scale_w = w_ / h_ * h
- center = np.array([np.round(w / 2.), np.round(h / 2.)])
- size_resized = (w_, h_)
- trans = get_affine_transform(
- center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)
- return trans, size_resized
- def get_affine_transform(center,
- input_size,
- rot,
- output_size,
- shift=(0., 0.),
- inv=False):
- """Get the affine transform matrix, given the center/scale/rot/output_size.
- Args:
- center (np.ndarray[2, ]): Center of the bounding box (x, y).
- scale (np.ndarray[2, ]): Scale of the bounding box
- wrt [width, height].
- rot (float): Rotation angle (degree).
- output_size (np.ndarray[2, ]): Size of the destination heatmaps.
- shift (0-100%): Shift translation ratio wrt the width/height.
- Default (0., 0.).
- inv (bool): Option to inverse the affine transform direction.
- (inv=False: src->dst or inv=True: dst->src)
- Returns:
- np.ndarray: The transform matrix.
- """
- assert len(center) == 2
- assert len(output_size) == 2
- assert len(shift) == 2
- if not isinstance(input_size, (np.ndarray, list)):
- input_size = np.array([input_size, input_size], dtype=np.float32)
- scale_tmp = input_size
- shift = np.array(shift)
- src_w = scale_tmp[0]
- dst_w = output_size[0]
- dst_h = output_size[1]
- rot_rad = np.pi * rot / 180
- src_dir = rotate_point([0., src_w * -0.5], rot_rad)
- dst_dir = np.array([0., dst_w * -0.5])
- src = np.zeros((3, 2), dtype=np.float32)
- src[0, :] = center + scale_tmp * shift
- src[1, :] = center + src_dir + scale_tmp * shift
- src[2, :] = _get_3rd_point(src[0, :], src[1, :])
- dst = np.zeros((3, 2), dtype=np.float32)
- dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
- dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
- dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
- if inv:
- trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
- else:
- trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
- return trans
- def get_warp_matrix(theta, size_input, size_dst, size_target):
- """This code is based on
- https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
- Calculate the transformation matrix under the constraint of unbiased.
- Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
- Data Processing for Human Pose Estimation (CVPR 2020).
- Args:
- theta (float): Rotation angle in degrees.
- size_input (np.ndarray): Size of input image [w, h].
- size_dst (np.ndarray): Size of output image [w, h].
- size_target (np.ndarray): Size of ROI in input plane [w, h].
- Returns:
- matrix (np.ndarray): A matrix for transformation.
- """
- theta = np.deg2rad(theta)
- matrix = np.zeros((2, 3), dtype=np.float32)
- scale_x = size_dst[0] / size_target[0]
- scale_y = size_dst[1] / size_target[1]
- matrix[0, 0] = np.cos(theta) * scale_x
- matrix[0, 1] = -np.sin(theta) * scale_x
- matrix[0, 2] = scale_x * (
- -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
- np.sin(theta) + 0.5 * size_target[0])
- matrix[1, 0] = np.sin(theta) * scale_y
- matrix[1, 1] = np.cos(theta) * scale_y
- matrix[1, 2] = scale_y * (
- -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
- np.cos(theta) + 0.5 * size_target[1])
- return matrix
- def rotate_point(pt, angle_rad):
- """Rotate a point by an angle.
- Args:
- pt (list[float]): 2 dimensional point to be rotated
- angle_rad (float): rotation angle by radian
- Returns:
- list[float]: Rotated point.
- """
- assert len(pt) == 2
- sn, cs = np.sin(angle_rad), np.cos(angle_rad)
- new_x = pt[0] * cs - pt[1] * sn
- new_y = pt[0] * sn + pt[1] * cs
- rotated_pt = [new_x, new_y]
- return rotated_pt
- def _get_3rd_point(a, b):
- """To calculate the affine matrix, three pairs of points are required. This
- function is used to get the 3rd point, given 2D points a & b.
- The 3rd point is defined by rotating vector `a - b` by 90 degrees
- anticlockwise, using b as the rotation center.
- Args:
- a (np.ndarray): point(x,y)
- b (np.ndarray): point(x,y)
- Returns:
- np.ndarray: The 3rd point.
- """
- assert len(a) == 2
- assert len(b) == 2
- direction = a - b
- third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
- return third_pt
- class TopDownEvalAffine(object):
- """apply affine transform to image and coords
- Args:
- trainsize (list): [w, h], the standard size used to train
- use_udp (bool): whether to use Unbiased Data Processing.
- records(dict): the dict contained the image and coords
- Returns:
- records (dict): contain the image and coords after tranformed
- """
- def __init__(self, trainsize, use_udp=False):
- self.trainsize = trainsize
- self.use_udp = use_udp
- def __call__(self, image, im_info):
- rot = 0
- imshape = im_info['im_shape'][::-1]
- center = im_info['center'] if 'center' in im_info else imshape / 2.
- scale = im_info['scale'] if 'scale' in im_info else imshape
- if self.use_udp:
- trans = get_warp_matrix(
- rot, center * 2.0,
- [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
- image = cv2.warpAffine(
- image,
- trans, (int(self.trainsize[0]), int(self.trainsize[1])),
- flags=cv2.INTER_LINEAR)
- else:
- trans = get_affine_transform(center, scale, rot, self.trainsize)
- image = cv2.warpAffine(
- image,
- trans, (int(self.trainsize[0]), int(self.trainsize[1])),
- flags=cv2.INTER_LINEAR)
- return image, im_info
- def expand_crop(images, rect, expand_ratio=0.3):
- imgh, imgw, c = images.shape
- label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
- if label != 0:
- return None, None, None
- org_rect = [xmin, ymin, xmax, ymax]
- h_half = (ymax - ymin) * (1 + expand_ratio) / 2.
- w_half = (xmax - xmin) * (1 + expand_ratio) / 2.
- if h_half > w_half * 4 / 3:
- w_half = h_half * 0.75
- center = [(ymin + ymax) / 2., (xmin + xmax) / 2.]
- ymin = max(0, int(center[0] - h_half))
- ymax = min(imgh - 1, int(center[0] + h_half))
- xmin = max(0, int(center[1] - w_half))
- xmax = min(imgw - 1, int(center[1] + w_half))
- return images[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect
|