123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import division
- import os
- import cv2
- import numpy as np
- from PIL import Image, ImageDraw, ImageFile
- ImageFile.LOAD_TRUNCATED_IMAGES = True
- from collections import deque
- def visualize_box_mask(im, results, labels, threshold=0.5):
- """
- Args:
- im (str/np.ndarray): path of image/np.ndarray read by cv2
- results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): Threshold of score.
- Returns:
- im (PIL.Image.Image): visualized image
- """
- if isinstance(im, str):
- im = Image.open(im).convert('RGB')
- else:
- im = Image.fromarray(im)
- if 'boxes' in results and len(results['boxes']) > 0:
- im = draw_box(im, results['boxes'], labels, threshold=threshold)
- return im
- def get_color_map_list(num_classes):
- """
- Args:
- num_classes (int): number of class
- Returns:
- color_map (list): RGB color list
- """
- color_map = num_classes * [0, 0, 0]
- for i in range(0, num_classes):
- j = 0
- lab = i
- while lab:
- color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
- color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
- color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
- j += 1
- lab >>= 3
- color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
- return color_map
- def draw_box(im, np_boxes, labels, threshold=0.5):
- """
- Args:
- im (PIL.Image.Image): PIL image
- np_boxes (np.ndarray): shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): threshold of box
- Returns:
- im (PIL.Image.Image): visualized image
- """
- draw_thickness = min(im.size) // 320
- draw = ImageDraw.Draw(im)
- clsid2color = {}
- color_list = get_color_map_list(len(labels))
- expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
- np_boxes = np_boxes[expect_boxes, :]
- for dt in np_boxes:
- clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
- if clsid not in clsid2color:
- clsid2color[clsid] = color_list[clsid]
- color = tuple(clsid2color[clsid])
- if len(bbox) == 4:
- xmin, ymin, xmax, ymax = bbox
- print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
- 'right_bottom:[{:.2f},{:.2f}]'.format(
- int(clsid), score, xmin, ymin, xmax, ymax))
- # draw bbox
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=draw_thickness,
- fill=color)
- elif len(bbox) == 8:
- x1, y1, x2, y2, x3, y3, x4, y4 = bbox
- draw.line(
- [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
- width=2,
- fill=color)
- xmin = min(x1, x2, x3, x4)
- ymin = min(y1, y2, y3, y4)
- # draw label
- text = "{} {:.4f}".format(labels[clsid], score)
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- return im
- def get_color(idx):
- idx = idx * 3
- color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
- return color
- def plot_tracking(image,
- tlwhs,
- obj_ids,
- scores=None,
- frame_id=0,
- fps=0.,
- ids2names=[],
- do_entrance_counting=False,
- entrance=None):
- im = np.ascontiguousarray(np.copy(image))
- im_h, im_w = im.shape[:2]
- text_scale = max(0.5, image.shape[1] / 3000.)
- text_thickness = 2
- line_thickness = max(1, int(image.shape[1] / 500.))
- cv2.putText(
- im,
- 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
- (0, int(15 * text_scale) + 5),
- cv2.FONT_ITALIC,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- for i, tlwh in enumerate(tlwhs):
- x1, y1, w, h = tlwh
- intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
- obj_id = int(obj_ids[i])
- id_text = 'ID: {}'.format(int(obj_id))
- if ids2names != []:
- assert len(
- ids2names) == 1, "plot_tracking only supports single classes."
- id_text = 'ID: {}_'.format(ids2names[0]) + id_text
- _line_thickness = 1 if obj_id <= 0 else line_thickness
- color = get_color(abs(obj_id))
- cv2.rectangle(
- im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
- cv2.putText(
- im,
- id_text, (intbox[0], intbox[1] - 25),
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 255),
- thickness=text_thickness)
- if scores is not None:
- text = 'score: {:.2f}'.format(float(scores[i]))
- cv2.putText(
- im,
- text, (intbox[0], intbox[1] - 6),
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 0),
- thickness=text_thickness)
- if do_entrance_counting:
- entrance_line = tuple(map(int, entrance))
- cv2.rectangle(
- im,
- entrance_line[0:2],
- entrance_line[2:4],
- color=(0, 255, 255),
- thickness=line_thickness)
- return im
- def plot_tracking_dict(image,
- num_classes,
- tlwhs_dict,
- obj_ids_dict,
- scores_dict,
- frame_id=0,
- fps=0.,
- ids2names=[],
- do_entrance_counting=False,
- entrance=None,
- records=None,
- center_traj=None):
- im = np.ascontiguousarray(np.copy(image))
- im_h, im_w = im.shape[:2]
- text_scale = max(0.5, image.shape[1] / 3000.)
- text_thickness = 2
- line_thickness = max(1, int(image.shape[1] / 500.))
- if num_classes == 1:
- if records is not None:
- start = records[-1].find('Total')
- end = records[-1].find('In')
- cv2.putText(
- im,
- records[-1][start:end], (0, int(40 * text_scale) + 10),
- cv2.FONT_ITALIC,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- if num_classes == 1 and do_entrance_counting:
- entrance_line = tuple(map(int, entrance))
- cv2.rectangle(
- im,
- entrance_line[0:2],
- entrance_line[2:4],
- color=(0, 255, 255),
- thickness=line_thickness)
- # find start location for entrance counting data
- start = records[-1].find('In')
- cv2.putText(
- im,
- records[-1][start:-1], (0, int(60 * text_scale) + 10),
- cv2.FONT_ITALIC,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- for cls_id in range(num_classes):
- tlwhs = tlwhs_dict[cls_id]
- obj_ids = obj_ids_dict[cls_id]
- scores = scores_dict[cls_id]
- cv2.putText(
- im,
- 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
- (0, int(15 * text_scale) + 5),
- cv2.FONT_ITALIC,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- record_id = set()
- for i, tlwh in enumerate(tlwhs):
- x1, y1, w, h = tlwh
- intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
- center = tuple(map(int, (x1 + w / 2., y1 + h / 2.)))
- obj_id = int(obj_ids[i])
- if center_traj is not None:
- record_id.add(obj_id)
- if obj_id not in center_traj[cls_id]:
- center_traj[cls_id][obj_id] = deque(maxlen=30)
- center_traj[cls_id][obj_id].append(center)
- id_text = '{}'.format(int(obj_id))
- if ids2names != []:
- id_text = '{}_{}'.format(ids2names[cls_id], id_text)
- else:
- id_text = 'class{}_{}'.format(cls_id, id_text)
- _line_thickness = 1 if obj_id <= 0 else line_thickness
- color = get_color(abs(obj_id))
- cv2.rectangle(
- im,
- intbox[0:2],
- intbox[2:4],
- color=color,
- thickness=line_thickness)
- cv2.putText(
- im,
- id_text, (intbox[0], intbox[1] - 25),
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 255),
- thickness=text_thickness)
- if scores is not None:
- text = 'score: {:.2f}'.format(float(scores[i]))
- cv2.putText(
- im,
- text, (intbox[0], intbox[1] - 6),
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 0),
- thickness=text_thickness)
- if center_traj is not None:
- for traj in center_traj:
- for i in traj.keys():
- if i not in record_id:
- continue
- for point in traj[i]:
- cv2.circle(im, point, 3, (0, 0, 255), -1)
- return im
|