123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- import glob
- from functools import reduce
- import cv2
- import numpy as np
- import math
- import paddle
- from paddle.inference import Config
- from paddle.inference import create_predictor
- import sys
- # add deploy path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
- sys.path.insert(0, parent_path)
- from benchmark_utils import PaddleInferBenchmark
- from picodet_postprocess import PicoDetPostProcess
- from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, decode_image
- from mot.visualize import visualize_box_mask
- from mot_utils import argsparser, Timer, get_current_memory_mb
- # Global dictionary
- SUPPORT_MODELS = {
- 'YOLO',
- 'PicoDet',
- 'JDE',
- 'FairMOT',
- 'DeepSORT',
- 'StrongBaseline',
- }
- def bench_log(detector, img_list, model_info, batch_size=1, name=None):
- mems = {
- 'cpu_rss_mb': detector.cpu_mem / len(img_list),
- 'gpu_rss_mb': detector.gpu_mem / len(img_list),
- 'gpu_util': detector.gpu_util * 100 / len(img_list)
- }
- perf_info = detector.det_times.report(average=True)
- data_info = {
- 'batch_size': batch_size,
- 'shape': "dynamic_shape",
- 'data_num': perf_info['img_num']
- }
- log = PaddleInferBenchmark(detector.config, model_info, data_info,
- perf_info, mems)
- log(name)
- class Detector(object):
- """
- Args:
- pred_config (object): config of model, defined by `Config(model_dir)`
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- output_dir (str): The path of output
- threshold (float): The threshold of score for visualization
- """
- def __init__(
- self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5, ):
- self.pred_config = self.set_config(model_dir)
- self.predictor, self.config = load_predictor(
- model_dir,
- run_mode=run_mode,
- batch_size=batch_size,
- min_subgraph_size=self.pred_config.min_subgraph_size,
- device=device,
- use_dynamic_shape=self.pred_config.use_dynamic_shape,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn)
- self.det_times = Timer()
- self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
- self.batch_size = batch_size
- self.output_dir = output_dir
- self.threshold = threshold
- def set_config(self, model_dir):
- return PredictConfig(model_dir)
- def preprocess(self, image_list):
- preprocess_ops = []
- for op_info in self.pred_config.preprocess_infos:
- new_op_info = op_info.copy()
- op_type = new_op_info.pop('type')
- preprocess_ops.append(eval(op_type)(**new_op_info))
- input_im_lst = []
- input_im_info_lst = []
- for im_path in image_list:
- im, im_info = preprocess(im_path, preprocess_ops)
- input_im_lst.append(im)
- input_im_info_lst.append(im_info)
- inputs = create_inputs(input_im_lst, input_im_info_lst)
- input_names = self.predictor.get_input_names()
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(input_names[i])
- input_tensor.copy_from_cpu(inputs[input_names[i]])
- return inputs
- def postprocess(self, inputs, result):
- # postprocess output of predictor
- np_boxes_num = result['boxes_num']
- if np_boxes_num[0] <= 0:
- print('[WARNNING] No object detected.')
- result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
- result = {k: v for k, v in result.items() if v is not None}
- return result
- def predict(self, repeats=1):
- '''
- Args:
- repeats (int): repeats number for prediction
- Returns:
- result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- '''
- # model prediction
- np_boxes, np_boxes_num = None, None
- for i in range(repeats):
- self.predictor.run()
- output_names = self.predictor.get_output_names()
- boxes_tensor = self.predictor.get_output_handle(output_names[0])
- np_boxes = boxes_tensor.copy_to_cpu()
- boxes_num = self.predictor.get_output_handle(output_names[1])
- np_boxes_num = boxes_num.copy_to_cpu()
- result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
- return result
- def merge_batch_result(self, batch_result):
- if len(batch_result) == 1:
- return batch_result[0]
- res_key = batch_result[0].keys()
- results = {k: [] for k in res_key}
- for res in batch_result:
- for k, v in res.items():
- results[k].append(v)
- for k, v in results.items():
- results[k] = np.concatenate(v)
- return results
- def get_timer(self):
- return self.det_times
- def predict_image(self,
- image_list,
- run_benchmark=False,
- repeats=1,
- visual=True):
- batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
- results = []
- for i in range(batch_loop_cnt):
- start_index = i * self.batch_size
- end_index = min((i + 1) * self.batch_size, len(image_list))
- batch_image_list = image_list[start_index:end_index]
- if run_benchmark:
- # preprocess
- inputs = self.preprocess(batch_image_list) # warmup
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- result = self.predict(repeats=repeats) # warmup
- self.det_times.inference_time_s.start()
- result = self.predict(repeats=repeats)
- self.det_times.inference_time_s.end(repeats=repeats)
- # postprocess
- result_warmup = self.postprocess(inputs, result) # warmup
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- cm, gm, gu = get_current_memory_mb()
- self.cpu_mem += cm
- self.gpu_mem += gm
- self.gpu_util += gu
- else:
- # preprocess
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- self.det_times.inference_time_s.start()
- result = self.predict()
- self.det_times.inference_time_s.end()
- # postprocess
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- if visual:
- visualize(
- batch_image_list,
- result,
- self.pred_config.labels,
- output_dir=self.output_dir,
- threshold=self.threshold)
- results.append(result)
- if visual:
- print('Test iter {}'.format(i))
- results = self.merge_batch_result(results)
- return results
- def predict_video(self, video_file, camera_id):
- video_out_name = 'output.mp4'
- if camera_id != -1:
- capture = cv2.VideoCapture(camera_id)
- else:
- capture = cv2.VideoCapture(video_file)
- video_out_name = os.path.split(video_file)[-1]
- # Get Video info : resolution, fps, frame count
- width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = int(capture.get(cv2.CAP_PROP_FPS))
- frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
- print("fps: %d, frame_count: %d" % (fps, frame_count))
- if not os.path.exists(self.output_dir):
- os.makedirs(self.output_dir)
- out_path = os.path.join(self.output_dir, video_out_name)
- fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
- writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
- index = 1
- while (1):
- ret, frame = capture.read()
- if not ret:
- break
- print('detect frame: %d' % (index))
- index += 1
- results = self.predict_image([frame], visual=False)
- im = visualize_box_mask(
- frame,
- results,
- self.pred_config.labels,
- threshold=self.threshold)
- im = np.array(im)
- writer.write(im)
- if camera_id != -1:
- cv2.imshow('Mask Detection', im)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- writer.release()
- def create_inputs(imgs, im_info):
- """generate input for different model type
- Args:
- imgs (list(numpy)): list of images (np.ndarray)
- im_info (list(dict)): list of image info
- Returns:
- inputs (dict): input of model
- """
- inputs = {}
- im_shape = []
- scale_factor = []
- if len(imgs) == 1:
- inputs['image'] = np.array((imgs[0], )).astype('float32')
- inputs['im_shape'] = np.array(
- (im_info[0]['im_shape'], )).astype('float32')
- inputs['scale_factor'] = np.array(
- (im_info[0]['scale_factor'], )).astype('float32')
- return inputs
- for e in im_info:
- im_shape.append(np.array((e['im_shape'], )).astype('float32'))
- scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))
- inputs['im_shape'] = np.concatenate(im_shape, axis=0)
- inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
- imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
- max_shape_h = max([e[0] for e in imgs_shape])
- max_shape_w = max([e[1] for e in imgs_shape])
- padding_imgs = []
- for img in imgs:
- im_c, im_h, im_w = img.shape[:]
- padding_im = np.zeros(
- (im_c, max_shape_h, max_shape_w), dtype=np.float32)
- padding_im[:, :im_h, :im_w] = img
- padding_imgs.append(padding_im)
- inputs['image'] = np.stack(padding_imgs, axis=0)
- return inputs
- class PredictConfig():
- """set config of preprocess, postprocess and visualize
- Args:
- model_dir (str): root path of model.yml
- """
- def __init__(self, model_dir):
- # parsing Yaml config for Preprocess
- deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
- with open(deploy_file) as f:
- yml_conf = yaml.safe_load(f)
- self.check_model(yml_conf)
- self.arch = yml_conf['arch']
- self.preprocess_infos = yml_conf['Preprocess']
- self.min_subgraph_size = yml_conf['min_subgraph_size']
- self.labels = yml_conf['label_list']
- self.mask = False
- self.use_dynamic_shape = yml_conf['use_dynamic_shape']
- if 'mask' in yml_conf:
- self.mask = yml_conf['mask']
- self.tracker = None
- if 'tracker' in yml_conf:
- self.tracker = yml_conf['tracker']
- if 'NMS' in yml_conf:
- self.nms = yml_conf['NMS']
- if 'fpn_stride' in yml_conf:
- self.fpn_stride = yml_conf['fpn_stride']
- self.print_config()
- def check_model(self, yml_conf):
- """
- Raises:
- ValueError: loaded model not in supported model type
- """
- for support_model in SUPPORT_MODELS:
- if support_model in yml_conf['arch']:
- return True
- raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
- 'arch'], SUPPORT_MODELS))
- def print_config(self):
- print('----------- Model Configuration -----------')
- print('%s: %s' % ('Model Arch', self.arch))
- print('%s: ' % ('Transform Order'))
- for op_info in self.preprocess_infos:
- print('--%s: %s' % ('transform op', op_info['type']))
- print('--------------------------------------------')
- def load_predictor(model_dir,
- run_mode='paddle',
- batch_size=1,
- device='CPU',
- min_subgraph_size=3,
- use_dynamic_shape=False,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False):
- """set AnalysisConfig, generate AnalysisPredictor
- Args:
- model_dir (str): root path of __model__ and __params__
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
- use_dynamic_shape (bool): use dynamic shape or not
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- Returns:
- predictor (PaddlePredictor): AnalysisPredictor
- Raises:
- ValueError: predict by TensorRT need device == 'GPU'.
- """
- if device != 'GPU' and run_mode != 'paddle':
- raise ValueError(
- "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
- .format(run_mode, device))
- config = Config(
- os.path.join(model_dir, 'model.pdmodel'),
- os.path.join(model_dir, 'model.pdiparams'))
- if device == 'GPU':
- # initial GPU memory(M), device ID
- config.enable_use_gpu(200, 0)
- # optimize graph and fuse op
- config.switch_ir_optim(True)
- elif device == 'XPU':
- config.enable_lite_engine()
- config.enable_xpu(10 * 1024 * 1024)
- else:
- config.disable_gpu()
- config.set_cpu_math_library_num_threads(cpu_threads)
- if enable_mkldnn:
- try:
- # cache 10 different shapes for mkldnn to avoid memory leak
- config.set_mkldnn_cache_capacity(10)
- config.enable_mkldnn()
- except Exception as e:
- print(
- "The current environment does not support `mkldnn`, so disable mkldnn."
- )
- pass
- precision_map = {
- 'trt_int8': Config.Precision.Int8,
- 'trt_fp32': Config.Precision.Float32,
- 'trt_fp16': Config.Precision.Half
- }
- if run_mode in precision_map.keys():
- config.enable_tensorrt_engine(
- workspace_size=1 << 25,
- max_batch_size=batch_size,
- min_subgraph_size=min_subgraph_size,
- precision_mode=precision_map[run_mode],
- use_static=False,
- use_calib_mode=trt_calib_mode)
- if use_dynamic_shape:
- min_input_shape = {
- 'image': [batch_size, 3, trt_min_shape, trt_min_shape]
- }
- max_input_shape = {
- 'image': [batch_size, 3, trt_max_shape, trt_max_shape]
- }
- opt_input_shape = {
- 'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
- }
- config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
- opt_input_shape)
- print('trt set dynamic shape done!')
- # disable print log when predict
- config.disable_glog_info()
- # enable shared memory
- config.enable_memory_optim()
- # disable feed, fetch OP, needed by zero_copy_run
- config.switch_use_feed_fetch_ops(False)
- predictor = create_predictor(config)
- return predictor, config
- def get_test_images(infer_dir, infer_img):
- """
- Get image path list in TEST mode
- """
- assert infer_img is not None or infer_dir is not None, \
- "--infer_img or --infer_dir should be set"
- assert infer_img is None or os.path.isfile(infer_img), \
- "{} is not a file".format(infer_img)
- assert infer_dir is None or os.path.isdir(infer_dir), \
- "{} is not a directory".format(infer_dir)
- # infer_img has a higher priority
- if infer_img and os.path.isfile(infer_img):
- return [infer_img]
- images = set()
- infer_dir = os.path.abspath(infer_dir)
- assert os.path.isdir(infer_dir), \
- "infer_dir {} is not a directory".format(infer_dir)
- exts = ['jpg', 'jpeg', 'png', 'bmp']
- exts += [ext.upper() for ext in exts]
- for ext in exts:
- images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
- images = list(images)
- assert len(images) > 0, "no image found in {}".format(infer_dir)
- print("Found {} inference images in total.".format(len(images)))
- return images
- def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
- # visualize the predict result
- start_idx = 0
- for idx, image_file in enumerate(image_list):
- im_bboxes_num = result['boxes_num'][idx]
- im_results = {}
- if 'boxes' in result:
- im_results['boxes'] = result['boxes'][start_idx:start_idx +
- im_bboxes_num, :]
- start_idx += im_bboxes_num
- im = visualize_box_mask(
- image_file, im_results, labels, threshold=threshold)
- img_name = os.path.split(image_file)[-1]
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- out_path = os.path.join(output_dir, img_name)
- im.save(out_path, quality=95)
- print("save result to: " + out_path)
- def print_arguments(args):
- print('----------- Running Arguments -----------')
- for arg, value in sorted(vars(args).items()):
- print('%s: %s' % (arg, value))
- print('------------------------------------------')
- def main():
- deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
- with open(deploy_file) as f:
- yml_conf = yaml.safe_load(f)
- arch = yml_conf['arch']
- detector_func = 'Detector'
- detector = eval(detector_func)(FLAGS.model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=FLAGS.batch_size,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- threshold=FLAGS.threshold,
- output_dir=FLAGS.output_dir)
- # predict from video file or camera video stream
- if FLAGS.video_file is not None or FLAGS.camera_id != -1:
- detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
- else:
- # predict from image
- if FLAGS.image_dir is None and FLAGS.image_file is not None:
- assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- else:
- mode = FLAGS.run_mode
- model_dir = FLAGS.model_dir
- model_info = {
- 'model_name': model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- bench_log(detector, img_list, model_info, name='DET')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- main()
|