1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- #!/usr/bin/env bash
- set -xe
- # Usage:CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${batch_size} ${fp_item} ${max_epoch} ${model_name}
- python="python3.7"
- # Parameter description
- function _set_params(){
- run_mode=${1:-"sp"} # sp|mp
- batch_size=${2:-"2"}
- fp_item=${3:-"fp32"} # fp32|fp16
- max_epoch=${4:-"1"}
- model_item=${5:-"model_item"}
- run_log_path=${TRAIN_LOG_DIR:-$(pwd)}
- # 添加日志解析需要的参数
- base_batch_size=${batch_size}
- mission_name="目标检测"
- direction_id="0"
- ips_unit="images/s"
- skip_steps=10 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
- keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
- index="1"
- model_name=${model_item}_bs${batch_size}_${fp_item}
- device=${CUDA_VISIBLE_DEVICES//,/ }
- arr=(${device})
- num_gpu_devices=${#arr[*]}
- log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
- }
- function _train(){
- echo "Train on ${num_gpu_devices} GPUs"
- echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
- # set runtime params
- set_optimizer_lr_sp=" "
- set_optimizer_lr_mp=" "
- # parse model_item
- case ${model_item} in
- faster_rcnn) model_yml="benchmark/configs/faster_rcnn_r50_fpn_1x_coco.yml"
- set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
- fcos) model_yml="configs/fcos/fcos_r50_fpn_1x_coco.yml"
- set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
- deformable_detr) model_yml="configs/deformable_detr/deformable_detr_r50_1x_coco.yml" ;;
- gfl) model_yml="configs/gfl/gfl_r50_fpn_1x_coco.yml"
- set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
- hrnet) model_yml="configs/keypoint/hrnet/hrnet_w32_256x192.yml" ;;
- higherhrnet) model_yml="configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml" ;;
- solov2) model_yml="configs/solov2/solov2_r50_fpn_1x_coco.yml" ;;
- jde) model_yml="configs/mot/jde/jde_darknet53_30e_1088x608.yml" ;;
- fairmot) model_yml="configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml" ;;
- *) echo "Undefined model_item"; exit 1;
- esac
- set_batch_size="TrainReader.batch_size=${batch_size}"
- set_max_epoch="epoch=${max_epoch}"
- set_log_iter="log_iter=1"
- if [ ${fp_item} = "fp16" ]; then
- set_fp_item="--fp16"
- else
- set_fp_item=" "
- fi
- case ${run_mode} in
- sp) train_cmd="${python} -u tools/train.py -c ${model_yml} ${set_fp_item} \
- -o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_sp}" ;;
- mp) rm -rf mylog
- train_cmd="${python} -m paddle.distributed.launch --log_dir=./mylog \
- --gpus=${CUDA_VISIBLE_DEVICES} tools/train.py -c ${model_yml} ${set_fp_item} \
- -o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_mp}"
- log_parse_file="mylog/workerlog.0" ;;
- *) echo "choose run_mode(sp or mp)"; exit 1;
- esac
- timeout 15m ${train_cmd} > ${log_file} 2>&1
- if [ $? -ne 0 ];then
- echo -e "${train_cmd}, FAIL"
- export job_fail_flag=1
- else
- echo -e "${train_cmd}, SUCCESS"
- export job_fail_flag=0
- fi
- kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
- if [ $run_mode = "mp" -a -d mylog ]; then
- rm ${log_file}
- cp mylog/workerlog.0 ${log_file}
- fi
- }
- source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
- _set_params $@
- # _train # 如果只想产出训练log,不解析,可取消注释
- _run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
|