123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from scipy.optimize import linear_sum_assignment
- from ppdet.core.workspace import register, serializable
- from ..losses.iou_loss import GIoULoss
- from .utils import bbox_cxcywh_to_xyxy
- __all__ = ['HungarianMatcher']
- @register
- @serializable
- class HungarianMatcher(nn.Layer):
- __shared__ = ['use_focal_loss']
- def __init__(self,
- matcher_coeff={'class': 1,
- 'bbox': 5,
- 'giou': 2},
- use_focal_loss=False,
- alpha=0.25,
- gamma=2.0):
- r"""
- Args:
- matcher_coeff (dict): The coefficient of hungarian matcher cost.
- """
- super(HungarianMatcher, self).__init__()
- self.matcher_coeff = matcher_coeff
- self.use_focal_loss = use_focal_loss
- self.alpha = alpha
- self.gamma = gamma
- self.giou_loss = GIoULoss()
- def forward(self, boxes, logits, gt_bbox, gt_class):
- r"""
- Args:
- boxes (Tensor): [b, query, 4]
- logits (Tensor): [b, query, num_classes]
- gt_bbox (List(Tensor)): list[[n, 4]]
- gt_class (List(Tensor)): list[[n, 1]]
- Returns:
- A list of size batch_size, containing tuples of (index_i, index_j) where:
- - index_i is the indices of the selected predictions (in order)
- - index_j is the indices of the corresponding selected targets (in order)
- For each batch element, it holds:
- len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
- """
- bs, num_queries = boxes.shape[:2]
- num_gts = sum(len(a) for a in gt_class)
- if num_gts == 0:
- return [(paddle.to_tensor(
- [], dtype=paddle.int64), paddle.to_tensor(
- [], dtype=paddle.int64)) for _ in range(bs)]
- # We flatten to compute the cost matrices in a batch
- # [batch_size * num_queries, num_classes]
- out_prob = F.sigmoid(logits.flatten(
- 0, 1)) if self.use_focal_loss else F.softmax(logits.flatten(0, 1))
- # [batch_size * num_queries, 4]
- out_bbox = boxes.flatten(0, 1)
- # Also concat the target labels and boxes
- tgt_ids = paddle.concat(gt_class).flatten()
- tgt_bbox = paddle.concat(gt_bbox)
- # Compute the classification cost
- if self.use_focal_loss:
- neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(
- 1 - out_prob + 1e-8).log())
- pos_cost_class = self.alpha * (
- (1 - out_prob)**self.gamma) * (-(out_prob + 1e-8).log())
- cost_class = paddle.gather(
- pos_cost_class, tgt_ids, axis=1) - paddle.gather(
- neg_cost_class, tgt_ids, axis=1)
- else:
- cost_class = -paddle.gather(out_prob, tgt_ids, axis=1)
- # Compute the L1 cost between boxes
- cost_bbox = (
- out_bbox.unsqueeze(1) - tgt_bbox.unsqueeze(0)).abs().sum(-1)
- # Compute the giou cost betwen boxes
- cost_giou = self.giou_loss(
- bbox_cxcywh_to_xyxy(out_bbox.unsqueeze(1)),
- bbox_cxcywh_to_xyxy(tgt_bbox.unsqueeze(0))).squeeze(-1)
- # Final cost matrix
- C = self.matcher_coeff['class'] * cost_class + self.matcher_coeff['bbox'] * cost_bbox + \
- self.matcher_coeff['giou'] * cost_giou
- C = C.reshape([bs, num_queries, -1])
- C = [a.squeeze(0) for a in C.chunk(bs)]
- sizes = [a.shape[0] for a in gt_bbox]
- indices = [
- linear_sum_assignment(c.split(sizes, -1)[i].numpy())
- for i, c in enumerate(C)
- ]
- return [(paddle.to_tensor(
- i, dtype=paddle.int64), paddle.to_tensor(
- j, dtype=paddle.int64)) for i, j in indices]
|