123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import copy
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ..bbox_utils import bbox_overlaps
- __all__ = [
- '_get_clones', 'bbox_overlaps', 'bbox_cxcywh_to_xyxy',
- 'bbox_xyxy_to_cxcywh', 'sigmoid_focal_loss', 'inverse_sigmoid',
- 'deformable_attention_core_func'
- ]
- def _get_clones(module, N):
- return nn.LayerList([copy.deepcopy(module) for _ in range(N)])
- def bbox_cxcywh_to_xyxy(x):
- x_c, y_c, w, h = x.unbind(-1)
- b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
- return paddle.stack(b, axis=-1)
- def bbox_xyxy_to_cxcywh(x):
- x0, y0, x1, y1 = x.unbind(-1)
- b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
- return paddle.stack(b, axis=-1)
- def sigmoid_focal_loss(logit, label, normalizer=1.0, alpha=0.25, gamma=2.0):
- prob = F.sigmoid(logit)
- ce_loss = F.binary_cross_entropy_with_logits(logit, label, reduction="none")
- p_t = prob * label + (1 - prob) * (1 - label)
- loss = ce_loss * ((1 - p_t)**gamma)
- if alpha >= 0:
- alpha_t = alpha * label + (1 - alpha) * (1 - label)
- loss = alpha_t * loss
- return loss.mean(1).sum() / normalizer
- def inverse_sigmoid(x, eps=1e-6):
- x = x.clip(min=0., max=1.)
- return paddle.log(x / (1 - x + eps) + eps)
- def deformable_attention_core_func(value, value_spatial_shapes,
- sampling_locations, attention_weights):
- """
- Args:
- value (Tensor): [bs, value_length, n_head, c]
- value_spatial_shapes (Tensor): [n_levels, 2]
- sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]
- attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]
- Returns:
- output (Tensor): [bs, Length_{query}, C]
- """
- bs, Len_v, n_head, c = value.shape
- _, Len_q, n_head, n_levels, n_points, _ = sampling_locations.shape
- value_list = value.split(value_spatial_shapes.prod(1).tolist(), axis=1)
- sampling_grids = 2 * sampling_locations - 1
- sampling_value_list = []
- for level, (h, w) in enumerate(value_spatial_shapes.tolist()):
- # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
- value_l_ = value_list[level].flatten(2).transpose(
- [0, 2, 1]).reshape([bs * n_head, c, h, w])
- # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
- sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(
- [0, 2, 1, 3, 4]).flatten(0, 1)
- # N_*M_, D_, Lq_, P_
- sampling_value_l_ = F.grid_sample(
- value_l_,
- sampling_grid_l_,
- mode='bilinear',
- padding_mode='zeros',
- align_corners=False)
- sampling_value_list.append(sampling_value_l_)
- # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
- attention_weights = attention_weights.transpose([0, 2, 1, 3, 4]).reshape(
- [bs * n_head, 1, Len_q, n_levels * n_points])
- output = (paddle.stack(
- sampling_value_list, axis=-2).flatten(-2) *
- attention_weights).sum(-1).reshape([bs, n_head * c, Len_q])
- return output.transpose([0, 2, 1])
|