MaochengHu 576cda45b8 first commit | %!s(int64=2) %!d(string=hai) anos | |
---|---|---|
.. | ||
bytetrack | %!s(int64=2) %!d(string=hai) anos | |
deepsort | %!s(int64=2) %!d(string=hai) anos | |
fairmot | %!s(int64=2) %!d(string=hai) anos | |
headtracking21 | %!s(int64=2) %!d(string=hai) anos | |
jde | %!s(int64=2) %!d(string=hai) anos | |
mcfairmot | %!s(int64=2) %!d(string=hai) anos | |
mtmct | %!s(int64=2) %!d(string=hai) anos | |
pedestrian | %!s(int64=2) %!d(string=hai) anos | |
vehicle | %!s(int64=2) %!d(string=hai) anos | |
README.md | %!s(int64=2) %!d(string=hai) anos | |
README_en.md | %!s(int64=2) %!d(string=hai) anos |
简体中文 | English
当前主流的Tracking By Detecting方式的多目标追踪(Multi-Object Tracking, MOT)算法主要由两部分组成:Detection+Embedding。Detection部分即针对视频,检测出每一帧中的潜在目标。Embedding部分则将检出的目标分配和更新到已有的对应轨迹上(即ReID重识别任务)。根据这两部分实现的不同,又可以划分为SDE系列和JDE系列算法。
PaddleDetection实现了这两个系列的3种多目标跟踪算法,分别是SDE系列的DeepSORT和JDE系列的JDE与FairMOT。
此外,PaddleDetection还提供了PP-Tracking实时多目标跟踪系统。PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统,具有模型丰富、应用广泛和部署高效三大优势。 PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式,针对实际业务的难点和痛点,提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用,部署方式支持API调用和GUI可视化界面,部署语言支持Python和C++,部署平台环境支持Linux、NVIDIA Jetson等。
PP-Tracking 提供了AI Studio公开项目案例,教程请参考PP-Tracking之手把手玩转多目标跟踪。
PP-Tracking 支持Python预测部署,教程请参考PP-Tracking Python部署文档。
PP-Tracking 支持C++预测部署,教程请参考PP-Tracking C++部署文档。
PP-Tracking 提供了简洁的GUI可视化界面,教程请参考PP-Tracking可视化界面试用版使用文档。
一键安装MOT相关的依赖:
pip install lap sklearn motmetrics openpyxl
或者
pip install -r requirements.txt
注意:
apt-get update && apt-get install -y ffmpeg
。PaddleDetection复现JDE 和FairMOT,是使用的和他们相同的MIX数据集,包括Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17和MOT16。使用前6者作为联合数据集参与训练,MOT16作为评测数据集。如果您想使用这些数据集,请遵循他们的License。
注意:
首先按照以下命令下载image_lists.zip并解压放在PaddleDetection/dataset/mot
目录下:
wget https://dataset.bj.bcebos.com/mot/image_lists.zip
然后按照以下命令可以快速下载MIX数据集的各个子数据集,并解压放在PaddleDetection/dataset/mot
目录下:
wget https://dataset.bj.bcebos.com/mot/MOT17.zip
wget https://dataset.bj.bcebos.com/mot/Caltech.zip
wget https://dataset.bj.bcebos.com/mot/CUHKSYSU.zip
wget https://dataset.bj.bcebos.com/mot/PRW.zip
wget https://dataset.bj.bcebos.com/mot/Cityscapes.zip
wget https://dataset.bj.bcebos.com/mot/ETHZ.zip
wget https://dataset.bj.bcebos.com/mot/MOT16.zip
最终目录为:
dataset/mot
|——————image_lists
|——————caltech.10k.val
|——————caltech.all
|——————caltech.train
|——————caltech.val
|——————citypersons.train
|——————citypersons.val
|——————cuhksysu.train
|——————cuhksysu.val
|——————eth.train
|——————mot16.train
|——————mot17.train
|——————prw.train
|——————prw.val
|——————Caltech
|——————Cityscapes
|——————CUHKSYSU
|——————ETHZ
|——————MOT16
|——————MOT17
|——————PRW
这几个相关数据集都遵循以下结构:
MOT17
|——————images
| └——————train
| └——————test
└——————labels_with_ids
└——————train
所有数据集的标注是以统一数据格式提供的。各个数据集中每张图片都有相应的标注文本。给定一个图像路径,可以通过将字符串images
替换为labels_with_ids
并将.jpg
替换为.txt
来生成标注文本路径。在标注文本中,每行都描述一个边界框,格式如下:
[class] [identity] [x_center] [y_center] [width] [height]
注意:
class
为类别id,支持单类别和多类别,从0
开始计,单类别即为0
。identity
是从1
到num_identities
的整数(num_identities
是数据集中所有视频或图片序列的不同物体实例的总数),如果此框没有identity
标注,则为-1
。[x_center] [y_center] [width] [height]
是中心点坐标和宽高,注意他们的值是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。@inproceedings{Wojke2017simple,
title={Simple Online and Realtime Tracking with a Deep Association Metric},
author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
year={2017},
pages={3645--3649},
organization={IEEE},
doi={10.1109/ICIP.2017.8296962}
}
@inproceedings{Wojke2018deep,
title={Deep Cosine Metric Learning for Person Re-identification},
author={Wojke, Nicolai and Bewley, Alex},
booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
year={2018},
pages={748--756},
organization={IEEE},
doi={10.1109/WACV.2018.00087}
}
@article{wang2019towards,
title={Towards Real-Time Multi-Object Tracking},
author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
journal={arXiv preprint arXiv:1909.12605},
year={2019}
}
@article{zhang2020fair,
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={arXiv preprint arXiv:2004.01888},
year={2020}
}