12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- # 是否使用GPU(即是否使用 CUDA)
- WITH_GPU=OFF
- # 是否使用MKL or openblas,TX2需要设置为OFF
- WITH_MKL=ON
- # 是否集成 TensorRT(仅WITH_GPU=ON 有效)
- WITH_TENSORRT=OFF
- # paddle 预测库lib名称,由于不同平台不同版本预测库lib名称不同,请查看所下载的预测库中`paddle_inference/lib/`文件夹下`lib`的名称
- PADDLE_LIB_NAME=libpaddle_inference
- # TensorRT 的include路径
- TENSORRT_INC_DIR=/path/to/tensorrt/include
- # TensorRT 的lib路径
- TENSORRT_LIB_DIR=/path/to/tensorrt/lib
- # Paddle 预测库路径
- PADDLE_DIR=/path/to/paddle_inference
- # CUDA 的 lib 路径
- CUDA_LIB=/path/to/cuda/lib
- # CUDNN 的 lib 路径
- CUDNN_LIB=/path/to/cudnn/lib
- MACHINE_TYPE=`uname -m`
- echo "MACHINE_TYPE: "${MACHINE_TYPE}
- if [ "$MACHINE_TYPE" = "x86_64" ]
- then
- echo "set OPENCV_DIR for x86_64"
- # linux系统通过以下命令下载预编译的opencv
- mkdir -p $(pwd)/deps && cd $(pwd)/deps
- wget -c https://paddledet.bj.bcebos.com/data/opencv3.4.6gcc8.2ffmpeg.zip
- unzip opencv3.4.6gcc8.2ffmpeg.zip && cd ..
- # set OPENCV_DIR
- OPENCV_DIR=$(pwd)/deps/opencv3.4.6gcc8.2ffmpeg
- elif [ "$MACHINE_TYPE" = "aarch64" ]
- then
- echo "set OPENCV_DIR for aarch64"
- # TX2平台通过以下命令下载预编译的opencv
- mkdir -p $(pwd)/deps && cd $(pwd)/deps
- wget -c https://paddlemodels.bj.bcebos.com/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip
- unzip TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip && cd ..
- # set OPENCV_DIR
- OPENCV_DIR=$(pwd)/deps/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0/
- else
- echo "Please set OPENCV_DIR manually"
- fi
- echo "OPENCV_DIR: "$OPENCV_DIR
- # 以下无需改动
- rm -rf build
- mkdir -p build
- cd build
- cmake .. \
- -DWITH_GPU=${WITH_GPU} \
- -DWITH_MKL=${WITH_MKL} \
- -DWITH_TENSORRT=${WITH_TENSORRT} \
- -DTENSORRT_LIB_DIR=${TENSORRT_LIB_DIR} \
- -DTENSORRT_INC_DIR=${TENSORRT_INC_DIR} \
- -DPADDLE_DIR=${PADDLE_DIR} \
- -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
- -DCUDA_LIB=${CUDA_LIB} \
- -DCUDNN_LIB=${CUDNN_LIB} \
- -DOPENCV_DIR=${OPENCV_DIR} \
- -DPADDLE_LIB_NAME=${PADDLE_LIB_NAME}
- make
- echo "make finished!"
|