123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- import cv2
- import numpy as np
- import lap
- from scipy.spatial.distance import cdist
- from cython_bbox import bbox_overlaps as bbox_ious
- from yolox.motdt_tracker import kalman_filter
- def _indices_to_matches(cost_matrix, indices, thresh):
- matched_cost = cost_matrix[tuple(zip(*indices))]
- matched_mask = (matched_cost <= thresh)
- matches = indices[matched_mask]
- unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
- unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))
- return matches, unmatched_a, unmatched_b
- def linear_assignment(cost_matrix, thresh):
- if cost_matrix.size == 0:
- return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
- matches, unmatched_a, unmatched_b = [], [], []
- cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
- for ix, mx in enumerate(x):
- if mx >= 0:
- matches.append([ix, mx])
- unmatched_a = np.where(x < 0)[0]
- unmatched_b = np.where(y < 0)[0]
- matches = np.asarray(matches)
- return matches, unmatched_a, unmatched_b
- def ious(atlbrs, btlbrs):
- """
- Compute cost based on IoU
- :type atlbrs: list[tlbr] | np.ndarray
- :type atlbrs: list[tlbr] | np.ndarray
- :rtype ious np.ndarray
- """
- ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
- if ious.size == 0:
- return ious
- ious = bbox_ious(
- np.ascontiguousarray(atlbrs, dtype=np.float),
- np.ascontiguousarray(btlbrs, dtype=np.float)
- )
- return ious
- def iou_distance(atracks, btracks):
- """
- Compute cost based on IoU
- :type atracks: list[STrack]
- :type btracks: list[STrack]
- :rtype cost_matrix np.ndarray
- """
- atlbrs = [track.tlbr for track in atracks]
- btlbrs = [track.tlbr for track in btracks]
- _ious = ious(atlbrs, btlbrs)
- cost_matrix = 1 - _ious
- return cost_matrix
- def nearest_reid_distance(tracks, detections, metric='cosine'):
- """
- Compute cost based on ReID features
- :type tracks: list[STrack]
- :type detections: list[BaseTrack]
- :rtype cost_matrix np.ndarray
- """
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray([track.curr_feature for track in detections], dtype=np.float32)
- for i, track in enumerate(tracks):
- cost_matrix[i, :] = np.maximum(0.0, cdist(track.features, det_features, metric).min(axis=0))
- return cost_matrix
- def mean_reid_distance(tracks, detections, metric='cosine'):
- """
- Compute cost based on ReID features
- :type tracks: list[STrack]
- :type detections: list[BaseTrack]
- :type metric: str
- :rtype cost_matrix np.ndarray
- """
- cost_matrix = np.empty((len(tracks), len(detections)), dtype=np.float)
- if cost_matrix.size == 0:
- return cost_matrix
- track_features = np.asarray([track.curr_feature for track in tracks], dtype=np.float32)
- det_features = np.asarray([track.curr_feature for track in detections], dtype=np.float32)
- cost_matrix = cdist(track_features, det_features, metric)
- return cost_matrix
- def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
- if cost_matrix.size == 0:
- return cost_matrix
- gating_dim = 2 if only_position else 4
- gating_threshold = kalman_filter.chi2inv95[gating_dim]
- measurements = np.asarray([det.to_xyah() for det in detections])
- for row, track in enumerate(tracks):
- gating_distance = kf.gating_distance(
- track.mean, track.covariance, measurements, only_position)
- cost_matrix[row, gating_distance > gating_threshold] = np.inf
- return cost_matrix
|