123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
- from collections import deque
- import os
- import cv2
- import numpy as np
- import torch
- import torch.nn.functional as F
- from torchsummary import summary
- from core.mot.general import non_max_suppression_and_inds, non_max_suppression_jde, non_max_suppression, scale_coords
- from core.mot.torch_utils import intersect_dicts
- from models.mot.cstrack import Model
- from mot_online import matching
- from mot_online.kalman_filter import KalmanFilter
- from mot_online.log import logger
- from mot_online.utils import *
- from mot_online.basetrack import BaseTrack, TrackState
- class STrack(BaseTrack):
- shared_kalman = KalmanFilter()
- def __init__(self, tlwh, score, temp_feat, buffer_size=30):
- # wait activate
- self._tlwh = np.asarray(tlwh, dtype=np.float)
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
- self.score = score
- self.tracklet_len = 0
- self.smooth_feat = None
- self.update_features(temp_feat)
- self.features = deque([], maxlen=buffer_size)
- self.alpha = 0.9
- def update_features(self, feat):
- feat /= np.linalg.norm(feat)
- self.curr_feat = feat
- if self.smooth_feat is None:
- self.smooth_feat = feat
- else:
- self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
- self.features.append(feat)
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
- def predict(self):
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
- @staticmethod
- def multi_predict(stracks):
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def activate(self, kalman_filter, frame_id):
- """Start a new tracklet"""
- self.kalman_filter = kalman_filter
- self.track_id = self.next_id()
- self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- #self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- def re_activate(self, new_track, frame_id, new_id=False):
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
- )
- self.update_features(new_track.curr_feat)
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id:
- self.track_id = self.next_id()
- def update(self, new_track, frame_id, update_feature=True):
- """
- Update a matched track
- :type new_track: STrack
- :type frame_id: int
- :type update_feature: bool
- :return:
- """
- self.frame_id = frame_id
- self.tracklet_len += 1
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
- self.state = TrackState.Tracked
- self.is_activated = True
- self.score = new_track.score
- if update_feature:
- self.update_features(new_track.curr_feat)
- @property
- # @jit(nopython=True)
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
- @property
- # @jit(nopython=True)
- def tlbr(self):
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
- `(top left, bottom right)`.
- """
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
- @staticmethod
- # @jit(nopython=True)
- def tlwh_to_xyah(tlwh):
- """Convert bounding box to format `(center x, center y, aspect ratio,
- height)`, where the aspect ratio is `width / height`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
- def to_xyah(self):
- return self.tlwh_to_xyah(self.tlwh)
- @staticmethod
- # @jit(nopython=True)
- def tlbr_to_tlwh(tlbr):
- ret = np.asarray(tlbr).copy()
- ret[2:] -= ret[:2]
- return ret
- @staticmethod
- # @jit(nopython=True)
- def tlwh_to_tlbr(tlwh):
- ret = np.asarray(tlwh).copy()
- ret[2:] += ret[:2]
- return ret
- def __repr__(self):
- return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
- class JDETracker(object):
- def __init__(self, opt, frame_rate=30):
- self.opt = opt
- if int(opt.gpus[0]) >= 0:
- opt.device = torch.device('cuda')
- else:
- opt.device = torch.device('cpu')
- print('Creating model...')
- ckpt = torch.load(opt.weights, map_location=opt.device) # load checkpoint
- self.model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=1).to(opt.device) # create
- exclude = ['anchor'] if opt.cfg else [] # exclude keys
- if type(ckpt['model']).__name__ == "OrderedDict":
- state_dict = ckpt['model']
- else:
- state_dict = ckpt['model'].float().state_dict() # to FP32
- state_dict = intersect_dicts(state_dict, self.model.state_dict(), exclude=exclude) # intersect
- self.model.load_state_dict(state_dict, strict=False) # load
- self.model.cuda().eval()
- total_params = sum(p.numel() for p in self.model.parameters())
- print(f'{total_params:,} total parameters.')
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
- self.frame_id = 0
- self.det_thresh = opt.conf_thres
- self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
- self.max_time_lost = self.buffer_size
- self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3)
- self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3)
- self.kalman_filter = KalmanFilter()
- self.low_thres = 0.1
- self.high_thres = self.opt.conf_thres + 0.1
- def update(self, im_blob, img0,seq_num, save_dir):
- self.frame_id += 1
- activated_starcks = []
- refind_stracks = []
- lost_stracks = []
- removed_stracks = []
- dets = []
- ''' Step 1: Network forward, get detections & embeddings'''
- with torch.no_grad():
- output = self.model(im_blob, augment=False)
- pred, train_out = output[1]
- pred = pred[pred[:, :, 4] > self.low_thres]
- detections = []
- if len(pred) > 0:
- dets,x_inds,y_inds = non_max_suppression_and_inds(pred[:,:6].unsqueeze(0), 0.1, self.opt.nms_thres,method='cluster_diou')
- dets = dets.numpy()
- if len(dets) != 0:
- scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
- id_feature = output[0][0, y_inds, x_inds, :].cpu().numpy()
- remain_inds = dets[:, 4] > self.opt.conf_thres
- inds_low = dets[:, 4] > self.low_thres
- inds_high = dets[:, 4] < self.opt.conf_thres
- inds_second = np.logical_and(inds_low, inds_high)
- dets_second = dets[inds_second]
- if id_feature.shape[0] == 1:
- id_feature_second = id_feature
- else:
- id_feature_second = id_feature[inds_second]
- dets = dets[remain_inds]
- id_feature = id_feature[remain_inds]
- detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets[:, :5], id_feature)]
-
- else:
- detections = []
- dets_second = []
- id_feature_second = []
- else:
- detections = []
- dets_second = []
- id_feature_second = []
- ''' Add newly detected tracklets to tracked_stracks'''
- unconfirmed = []
- tracked_stracks = [] # type: list[STrack]
- for track in self.tracked_stracks:
- if not track.is_activated:
- unconfirmed.append(track)
- else:
- tracked_stracks.append(track)
- ''' Step 2: First association, with embedding'''
- strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
- # Predict the current location with KF
- #for strack in strack_pool:
- #strack.predict()
- STrack.multi_predict(strack_pool)
- dists = matching.embedding_distance(strack_pool, detections)
- dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
- #dists = matching.iou_distance(strack_pool, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.4)
- for itracked, idet in matches:
- track = strack_pool[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(detections[idet], self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # vis
- track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = [],[],[],[],[]
- if self.opt.vis_state == 1 and self.frame_id % 20 == 0:
- if len(dets) != 0:
- for i in range(0, dets.shape[0]):
- bbox = dets[i][0:4]
- cv2.rectangle(img0, (int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0, 255, 0), 2)
- track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = matching.vis_id_feature_A_distance(strack_pool, detections)
- vis_feature(self.frame_id,seq_num,img0,track_features,
- det_features, cost_matrix, cost_matrix_det, cost_matrix_track, max_num=5, out_path=save_dir)
- ''' Step 3: Second association, with IOU'''
- detections = [detections[i] for i in u_detection]
- r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
- dists = matching.iou_distance(r_tracked_stracks, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
- for itracked, idet in matches:
- track = r_tracked_stracks[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # association the untrack to the low score detections
- if len(dets_second) > 0:
- detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets_second[:, :5], id_feature_second)]
- else:
- detections_second = []
- second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
- dists = matching.iou_distance(second_tracked_stracks, detections_second)
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4)
- for itracked, idet in matches:
- track = second_tracked_stracks[itracked]
- det = detections_second[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- for it in u_track:
- track = second_tracked_stracks[it]
- if not track.state == TrackState.Lost:
- track.mark_lost()
- lost_stracks.append(track)
- '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
- detections = [detections[i] for i in u_detection]
- dists = matching.iou_distance(unconfirmed, detections)
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
- for itracked, idet in matches:
- unconfirmed[itracked].update(detections[idet], self.frame_id)
- activated_starcks.append(unconfirmed[itracked])
- for it in u_unconfirmed:
- track = unconfirmed[it]
- track.mark_removed()
- removed_stracks.append(track)
- """ Step 4: Init new stracks"""
- for inew in u_detection:
- track = detections[inew]
- if track.score < self.high_thres:
- continue
- track.activate(self.kalman_filter, self.frame_id)
- activated_starcks.append(track)
- """ Step 5: Update state"""
- for track in self.lost_stracks:
- if self.frame_id - track.end_frame > self.max_time_lost:
- track.mark_removed()
- removed_stracks.append(track)
- # print('Ramained match {} s'.format(t4-t3))
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
- self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
- self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
- self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
- self.lost_stracks.extend(lost_stracks)
- self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
- self.removed_stracks.extend(removed_stracks)
- self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
- # get scores of lost tracks
- output_stracks = [track for track in self.tracked_stracks if track.is_activated]
- logger.debug('===========Frame {}=========='.format(self.frame_id))
- logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
- logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
- logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
- logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
- return output_stracks
- def joint_stracks(tlista, tlistb):
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
- def sub_stracks(tlista, tlistb):
- stracks = {}
- for t in tlista:
- stracks[t.track_id] = t
- for t in tlistb:
- tid = t.track_id
- if stracks.get(tid, 0):
- del stracks[tid]
- return list(stracks.values())
- def remove_duplicate_stracks(stracksa, stracksb):
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist < 0.15)
- dupa, dupb = list(), list()
- for p, q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i, t in enumerate(stracksa) if not i in dupa]
- resb = [t for i, t in enumerate(stracksb) if not i in dupb]
- return resa, resb
- def vis_feature(frame_id,seq_num,img,track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track,max_num=5, out_path='/home/XX/'):
- num_zero = ["0000","000","00","0"]
- img = cv2.resize(img, (778, 435))
- if len(det_features) != 0:
- max_f = det_features.max()
- min_f = det_features.min()
- det_features = np.round((det_features - min_f) / (max_f - min_f) * 255)
- det_features = det_features.astype(np.uint8)
- d_F_M = []
- cutpff_line = [40]*512
- for d_f in det_features:
- for row in range(45):
- d_F_M += [[40]*3+d_f.tolist()+[40]*3]
- for row in range(3):
- d_F_M += [[40]*3+cutpff_line+[40]*3]
- d_F_M = np.array(d_F_M)
- d_F_M = d_F_M.astype(np.uint8)
- det_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
- feature_img2 = cv2.resize(det_features_img, (435, 435))
- #cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- else:
- feature_img2 = np.zeros((435, 435))
- feature_img2 = feature_img2.astype(np.uint8)
- feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
- #cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- feature_img = np.concatenate((img, feature_img2), axis=1)
- if len(cost_matrix_det) != 0 and len(cost_matrix_det[0]) != 0:
- max_f = cost_matrix_det.max()
- min_f = cost_matrix_det.min()
- cost_matrix_det = np.round((cost_matrix_det - min_f) / (max_f - min_f) * 255)
- d_F_M = []
- cutpff_line = [40]*len(cost_matrix_det)*10
- for c_m in cost_matrix_det:
- add = []
- for row in range(len(c_m)):
- add += [255-c_m[row]]*10
- for row in range(10):
- d_F_M += [[40]+add+[40]]
- d_F_M = np.array(d_F_M)
- d_F_M = d_F_M.astype(np.uint8)
- cost_matrix_det_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
- feature_img2 = cv2.resize(cost_matrix_det_img, (435, 435))
- #cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- else:
- feature_img2 = np.zeros((435, 435))
- feature_img2 = feature_img2.astype(np.uint8)
- feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
- #cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- feature_img = np.concatenate((feature_img, feature_img2), axis=1)
- if len(track_features) != 0:
- max_f = track_features.max()
- min_f = track_features.min()
- track_features = np.round((track_features - min_f) / (max_f - min_f) * 255)
- track_features = track_features.astype(np.uint8)
- d_F_M = []
- cutpff_line = [40]*512
- for d_f in track_features:
- for row in range(45):
- d_F_M += [[40]*3+d_f.tolist()+[40]*3]
- for row in range(3):
- d_F_M += [[40]*3+cutpff_line+[40]*3]
- d_F_M = np.array(d_F_M)
- d_F_M = d_F_M.astype(np.uint8)
- track_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
- feature_img2 = cv2.resize(track_features_img, (435, 435))
- #cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- else:
- feature_img2 = np.zeros((435, 435))
- feature_img2 = feature_img2.astype(np.uint8)
- feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
- #cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- feature_img = np.concatenate((feature_img, feature_img2), axis=1)
- if len(cost_matrix_track) != 0 and len(cost_matrix_track[0]) != 0:
- max_f = cost_matrix_track.max()
- min_f = cost_matrix_track.min()
- cost_matrix_track = np.round((cost_matrix_track - min_f) / (max_f - min_f) * 255)
- d_F_M = []
- cutpff_line = [40]*len(cost_matrix_track)*10
- for c_m in cost_matrix_track:
- add = []
- for row in range(len(c_m)):
- add += [255-c_m[row]]*10
- for row in range(10):
- d_F_M += [[40]+add+[40]]
- d_F_M = np.array(d_F_M)
- d_F_M = d_F_M.astype(np.uint8)
- cost_matrix_track_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
- feature_img2 = cv2.resize(cost_matrix_track_img, (435, 435))
- #cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- else:
- feature_img2 = np.zeros((435, 435))
- feature_img2 = feature_img2.astype(np.uint8)
- feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
- #cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- feature_img = np.concatenate((feature_img, feature_img2), axis=1)
- if len(cost_matrix) != 0 and len(cost_matrix[0]) != 0:
- max_f = cost_matrix.max()
- min_f = cost_matrix.min()
- cost_matrix = np.round((cost_matrix - min_f) / (max_f - min_f) * 255)
- d_F_M = []
- cutpff_line = [40]*len(cost_matrix[0])*10
- for c_m in cost_matrix:
- add = []
- for row in range(len(c_m)):
- add += [255-c_m[row]]*10
- for row in range(10):
- d_F_M += [[40]+add+[40]]
- d_F_M = np.array(d_F_M)
- d_F_M = d_F_M.astype(np.uint8)
- cost_matrix_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
- feature_img2 = cv2.resize(cost_matrix_img, (435, 435))
- #cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- else:
- feature_img2 = np.zeros((435, 435))
- feature_img2 = feature_img2.astype(np.uint8)
- feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
- #cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
- feature_img = np.concatenate((feature_img, feature_img2), axis=1)
- dst_path = out_path + "/" + seq_num + "_" + num_zero[len(str(frame_id))-1] + str(frame_id) + '.png'
- cv2.imwrite(dst_path, feature_img)
|