123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- import time
- import numpy as np
- import random
- import datetime
- import six
- from collections import deque
- from paddle.fluid import profiler
- from paddle import fluid
- from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
- from paddle.fluid.optimizer import ExponentialMovingAverage
- from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy # new line 1
- from paddle.fluid.incubate.fleet.base import role_maker # new line 2
- try:
- from ppdet.experimental import mixed_precision_context
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.data.reader import create_reader
- from ppdet.utils import dist_utils
- from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
- from ppdet.utils.stats import TrainingStats
- from ppdet.utils.cli import ArgsParser
- from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
- import ppdet.utils.checkpoint as checkpoint
- except ImportError as e:
- if sys.argv[0].find('static') >= 0:
- logger.error("Importing ppdet failed when running static model "
- "with error: {}\n"
- "please try:\n"
- "\t1. run static model under PaddleDetection/static "
- "directory\n"
- "\t2. run 'pip uninstall ppdet' to uninstall ppdet "
- "dynamic version firstly.".format(e))
- sys.exit(-1)
- else:
- raise e
- def main():
- role = role_maker.PaddleCloudRoleMaker(is_collective=True) # new line 3
- fleet.init(role) # new line 4
- env = os.environ
- num_trainers = int(env.get('PADDLE_TRAINERS_NUM', 0))
- assert num_trainers != 0, "multi-machine training process must be started using distributed.launch..."
- trainer_id = int(env.get("PADDLE_TRAINER_ID", 0))
- # set different seeds for different trainers
- random.seed(trainer_id)
- np.random.seed(trainer_id)
- if FLAGS.enable_ce:
- random.seed(0)
- np.random.seed(0)
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # check if paddlepaddle version is satisfied
- check_version()
- save_only = getattr(cfg, 'save_prediction_only', False)
- if save_only:
- raise NotImplementedError('The config file only support prediction,'
- ' training stage is not implemented now')
- main_arch = cfg.architecture
- assert cfg.use_gpu == True, "GPU must be supported for multi-machine training..."
- devices_num = fluid.core.get_cuda_device_count()
- if 'FLAGS_selected_gpus' in env:
- device_id = int(env['FLAGS_selected_gpus'])
- else:
- device_id = 0
- place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
- exe = fluid.Executor(place)
- lr_builder = create('LearningRate')
- optim_builder = create('OptimizerBuilder')
- # build program
- startup_prog = fluid.Program()
- train_prog = fluid.Program()
- if FLAGS.enable_ce:
- startup_prog.random_seed = 1000
- train_prog.random_seed = 1000
- with fluid.program_guard(train_prog, startup_prog):
- with fluid.unique_name.guard():
- model = create(main_arch)
- if FLAGS.fp16:
- assert (getattr(model.backbone, 'norm_type', None)
- != 'affine_channel'), \
- '--fp16 currently does not support affine channel, ' \
- ' please modify backbone settings to use batch norm'
- with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
- inputs_def = cfg['TrainReader']['inputs_def']
- feed_vars, train_loader = model.build_inputs(**inputs_def)
- train_fetches = model.train(feed_vars)
- loss = train_fetches['loss']
- if FLAGS.fp16:
- loss *= ctx.get_loss_scale_var()
- lr = lr_builder()
- optimizer = optim_builder(lr)
- dist_strategy = DistributedStrategy()
- sync_bn = getattr(model.backbone, 'norm_type',
- None) == 'sync_bn'
- dist_strategy.sync_batch_norm = sync_bn
- dist_strategy.nccl_comm_num = 1
- exec_strategy = fluid.ExecutionStrategy()
- exec_strategy.num_threads = 3
- exec_strategy.num_iteration_per_drop_scope = 30
- dist_strategy.exec_strategy = exec_strategy
- dist_strategy.fuse_all_reduce_ops = True
- optimizer = fleet.distributed_optimizer(
- optimizer, strategy=dist_strategy) # new line 5
- optimizer.minimize(loss)
- if FLAGS.fp16:
- loss /= ctx.get_loss_scale_var()
- if 'use_ema' in cfg and cfg['use_ema']:
- global_steps = _decay_step_counter()
- ema = ExponentialMovingAverage(
- cfg['ema_decay'], thres_steps=global_steps)
- ema.update()
- # parse train fetches
- train_keys, train_values, _ = parse_fetches(train_fetches)
- train_values.append(lr)
- if FLAGS.eval:
- eval_prog = fluid.Program()
- with fluid.program_guard(eval_prog, startup_prog):
- with fluid.unique_name.guard():
- model = create(main_arch)
- inputs_def = cfg['EvalReader']['inputs_def']
- feed_vars, eval_loader = model.build_inputs(**inputs_def)
- fetches = model.eval(feed_vars)
- eval_prog = eval_prog.clone(True)
- eval_reader = create_reader(cfg.EvalReader, devices_num=1)
- # When iterable mode, set set_sample_list_generator(eval_reader, place)
- eval_loader.set_sample_list_generator(eval_reader)
- # parse eval fetches
- extra_keys = []
- if cfg.metric == 'COCO':
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg.metric == 'VOC':
- extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
- if cfg.metric == 'WIDERFACE':
- extra_keys = ['im_id', 'im_shape', 'gt_bbox']
- eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
- extra_keys)
- exe.run(startup_prog)
- compiled_train_prog = fleet.main_program
- if FLAGS.eval:
- compiled_eval_prog = fluid.CompiledProgram(eval_prog)
- fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
- ignore_params = cfg.finetune_exclude_pretrained_params \
- if 'finetune_exclude_pretrained_params' in cfg else []
- start_iter = 0
- if FLAGS.resume_checkpoint:
- checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
- start_iter = checkpoint.global_step()
- elif cfg.pretrain_weights and fuse_bn and not ignore_params:
- checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
- elif cfg.pretrain_weights:
- checkpoint.load_params(
- exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params)
- train_reader = create_reader(
- cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num,
- cfg,
- devices_num=devices_num)
- # When iterable mode, set set_sample_list_generator(train_reader, place)
- train_loader.set_sample_list_generator(train_reader)
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- # if map_type not set, use default 11point, only use in VOC eval
- map_type = cfg.map_type if 'map_type' in cfg else '11point'
- train_stats = TrainingStats(cfg.log_iter, train_keys)
- train_loader.start()
- start_time = time.time()
- end_time = time.time()
- cfg_name = os.path.basename(FLAGS.config).split('.')[0]
- save_dir = os.path.join(cfg.save_dir, cfg_name)
- time_stat = deque(maxlen=cfg.log_iter)
- best_box_ap_list = [0.0, 0] #[map, iter]
- # use VisualDL to log data
- if FLAGS.use_vdl:
- assert six.PY3, "VisualDL requires Python >= 3.5"
- from visualdl import LogWriter
- vdl_writer = LogWriter(FLAGS.vdl_log_dir)
- vdl_loss_step = 0
- vdl_mAP_step = 0
- for it in range(start_iter, cfg.max_iters):
- start_time = end_time
- end_time = time.time()
- time_stat.append(end_time - start_time)
- time_cost = np.mean(time_stat)
- eta_sec = (cfg.max_iters - it) * time_cost
- eta = str(datetime.timedelta(seconds=int(eta_sec)))
- outs = exe.run(compiled_train_prog, fetch_list=train_values)
- stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
- # use vdl-paddle to log loss
- if FLAGS.use_vdl:
- if it % cfg.log_iter == 0:
- for loss_name, loss_value in stats.items():
- vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
- vdl_loss_step += 1
- train_stats.update(stats)
- logs = train_stats.log()
- if it % cfg.log_iter == 0 and trainer_id == 0:
- strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
- it, np.mean(outs[-1]), logs, time_cost, eta)
- logger.info(strs)
- # NOTE : profiler tools, used for benchmark
- if FLAGS.is_profiler and it == 5:
- profiler.start_profiler("All")
- elif FLAGS.is_profiler and it == 10:
- profiler.stop_profiler("total", FLAGS.profiler_path)
- return
- if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
- and trainer_id == 0:
- save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
- if 'use_ema' in cfg and cfg['use_ema']:
- exe.run(ema.apply_program)
- checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))
- if FLAGS.eval:
- # evaluation
- resolution = None
- if 'Mask' in cfg.architecture:
- resolution = model.mask_head.resolution
- results = eval_run(
- exe,
- compiled_eval_prog,
- eval_loader,
- eval_keys,
- eval_values,
- eval_cls,
- cfg,
- resolution=resolution)
- box_ap_stats = eval_results(
- results, cfg.metric, cfg.num_classes, resolution,
- is_bbox_normalized, FLAGS.output_eval, map_type,
- cfg['EvalReader']['dataset'])
- # use vdl_paddle to log mAP
- if FLAGS.use_vdl:
- vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
- vdl_mAP_step += 1
- if box_ap_stats[0] > best_box_ap_list[0]:
- best_box_ap_list[0] = box_ap_stats[0]
- best_box_ap_list[1] = it
- checkpoint.save(exe, train_prog,
- os.path.join(save_dir, "best_model"))
- logger.info("Best test box ap: {}, in iter: {}".format(
- best_box_ap_list[0], best_box_ap_list[1]))
- if 'use_ema' in cfg and cfg['use_ema']:
- exe.run(ema.restore_program)
- train_loader.reset()
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "-r",
- "--resume_checkpoint",
- default=None,
- type=str,
- help="Checkpoint path for resuming training.")
- parser.add_argument(
- "--fp16",
- action='store_true',
- default=False,
- help="Enable mixed precision training.")
- parser.add_argument(
- "--loss_scale",
- default=8.,
- type=float,
- help="Mixed precision training loss scale.")
- parser.add_argument(
- "--eval",
- action='store_true',
- default=False,
- help="Whether to perform evaluation in train")
- parser.add_argument(
- "--output_eval",
- default=None,
- type=str,
- help="Evaluation directory, default is current directory.")
- parser.add_argument(
- "--use_vdl",
- type=bool,
- default=False,
- help="whether to record the data to VisualDL.")
- parser.add_argument(
- '--vdl_log_dir',
- type=str,
- default="vdl_log_dir/scalar",
- help='VisualDL logging directory for scalar.')
- parser.add_argument(
- "--enable_ce",
- type=bool,
- default=False,
- help="If set True, enable continuous evaluation job."
- "This flag is only used for internal test.")
- #NOTE:args for profiler tools, used for benchmark
- parser.add_argument(
- '--is_profiler',
- type=int,
- default=0,
- help='The switch of profiler tools. (used for benchmark)')
- parser.add_argument(
- '--profiler_path',
- type=str,
- default="./detection.profiler",
- help='The profiler output file path. (used for benchmark)')
- FLAGS = parser.parse_args()
- main()
|