123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import paddle.fluid as fluid
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- try:
- from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
- import ppdet.utils.checkpoint as checkpoint
- from ppdet.utils.check import check_gpu, check_xpu, check_npu, check_version, check_config, enable_static_mode
- from ppdet.data.reader import create_reader
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.utils.cli import ArgsParser
- except ImportError as e:
- if sys.argv[0].find('static') >= 0:
- logger.error("Importing ppdet failed when running static model "
- "with error: {}\n"
- "please try:\n"
- "\t1. run static model under PaddleDetection/static "
- "directory\n"
- "\t2. run 'pip uninstall ppdet' to uninstall ppdet "
- "dynamic version firstly.".format(e))
- sys.exit(-1)
- else:
- raise e
- def main():
- """
- Main evaluate function
- """
- env = os.environ
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # disable npu in config by default and check use_npu
- if 'use_npu' not in cfg:
- cfg.use_npu = False
- check_npu(cfg.use_npu)
- use_xpu = False
- if hasattr(cfg, 'use_xpu'):
- check_xpu(cfg.use_xpu)
- use_xpu = cfg.use_xpu
- # check if paddlepaddle version is satisfied
- check_version()
- assert not (use_xpu and cfg.use_gpu), \
- 'Can not run on both XPU and GPU'
- assert not (cfg.use_npu and cfg.use_gpu), \
- 'Can not run on both NPU and GPU'
- main_arch = cfg.architecture
- multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
- if cfg.use_gpu and 'FLAGS_selected_gpus' in env:
- device_id = int(env['FLAGS_selected_gpus'])
- elif cfg.use_npu and 'FLAGS_selected_npus' in env:
- device_id = int(env['FLAGS_selected_npus'])
- elif use_xpu and 'FLAGS_selected_xpus' in env:
- device_id = int(env['FLAGS_selected_xpus'])
- else:
- device_id = 0
- # define executor
- if cfg.use_gpu:
- place = fluid.CUDAPlace(device_id)
- elif cfg.use_npu:
- place = fluid.NPUPlace(device_id)
- elif use_xpu:
- place = fluid.XPUPlace(device_id)
- else:
- place = fluid.CPUPlace()
- exe = fluid.Executor(place)
- # build program
- model = create(main_arch)
- startup_prog = fluid.Program()
- eval_prog = fluid.Program()
- with fluid.program_guard(eval_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['EvalReader']['inputs_def']
- feed_vars, loader = model.build_inputs(**inputs_def)
- if multi_scale_test is None:
- fetches = model.eval(feed_vars)
- else:
- fetches = model.eval(feed_vars, multi_scale_test)
- eval_prog = eval_prog.clone(True)
- reader = create_reader(cfg.EvalReader, devices_num=1)
- # When iterable mode, set set_sample_list_generator(reader, place)
- loader.set_sample_list_generator(reader)
- dataset = cfg['EvalReader']['dataset']
- # eval already exists json file
- if FLAGS.json_eval:
- logger.info(
- "In json_eval mode, PaddleDetection will evaluate json files in "
- "output_eval directly. And proposal.json, bbox.json and mask.json "
- "will be detected by default.")
- json_eval_results(
- cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
- return
- compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel()
- if use_xpu or cfg.use_npu:
- compile_program = eval_prog
- assert cfg.metric != 'OID', "eval process of OID dataset \
- is not supported."
- if cfg.metric == "WIDERFACE":
- raise ValueError("metric type {} does not support in tools/eval.py, "
- "please use tools/face_eval.py".format(cfg.metric))
- assert cfg.metric in ['COCO', 'VOC'], \
- "unknown metric type {}".format(cfg.metric)
- extra_keys = []
- if cfg.metric == 'COCO':
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg.metric == 'VOC':
- extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
- keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- sub_eval_prog = None
- sub_keys = None
- sub_values = None
- # build sub-program
- if 'Mask' in main_arch and multi_scale_test:
- sub_eval_prog = fluid.Program()
- with fluid.program_guard(sub_eval_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['EvalReader']['inputs_def']
- inputs_def['mask_branch'] = True
- feed_vars, eval_loader = model.build_inputs(**inputs_def)
- sub_fetches = model.eval(
- feed_vars, multi_scale_test, mask_branch=True)
- assert cfg.metric == 'COCO'
- extra_keys = ['im_id', 'im_shape']
- sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
- extra_keys)
- sub_eval_prog = sub_eval_prog.clone(True)
- # load model
- exe.run(startup_prog)
- if 'weights' in cfg:
- checkpoint.load_params(exe, startup_prog, cfg.weights)
- resolution = None
- if 'Mask' in cfg.architecture or cfg.architecture == 'HybridTaskCascade':
- resolution = model.mask_head.resolution
- results = eval_run(exe, compile_program, loader, keys, values, cls, cfg,
- sub_eval_prog, sub_keys, sub_values, resolution)
- # evaluation
- # if map_type not set, use default 11point, only use in VOC eval
- map_type = cfg.map_type if 'map_type' in cfg else '11point'
- save_only = getattr(cfg, 'save_prediction_only', False)
- eval_results(
- results,
- cfg.metric,
- cfg.num_classes,
- resolution,
- is_bbox_normalized,
- FLAGS.output_eval,
- map_type,
- dataset=dataset,
- save_only=save_only)
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--json_eval",
- action='store_true',
- default=False,
- help="Whether to re eval with already exists bbox.json or mask.json")
- parser.add_argument(
- "-f",
- "--output_eval",
- default=None,
- type=str,
- help="Evaluation file directory, default is current directory.")
- FLAGS = parser.parse_args()
- main()
|