123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import paddle.fluid as fluid
- from paddleslim.prune import Pruner
- from paddleslim.analysis import flops
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- try:
- from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
- import ppdet.utils.checkpoint as checkpoint
- from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
- from ppdet.data.reader import create_reader
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.utils.cli import ArgsParser
- except ImportError as e:
- if sys.argv[0].find('static') >= 0:
- logger.error("Importing ppdet failed when running static model "
- "with error: {}\n"
- "please try:\n"
- "\t1. run static model under PaddleDetection/static "
- "directory\n"
- "\t2. run 'pip uninstall ppdet' to uninstall ppdet "
- "dynamic version firstly.".format(e))
- sys.exit(-1)
- else:
- raise e
- def main():
- """
- Main evaluate function
- """
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # check if paddlepaddle version is satisfied
- check_version()
- main_arch = cfg.architecture
- multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
- # define executor
- place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
- exe = fluid.Executor(place)
- # build program
- model = create(main_arch)
- startup_prog = fluid.Program()
- eval_prog = fluid.Program()
- with fluid.program_guard(eval_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['EvalReader']['inputs_def']
- feed_vars, loader = model.build_inputs(**inputs_def)
- if multi_scale_test is None:
- fetches = model.eval(feed_vars)
- else:
- fetches = model.eval(feed_vars, multi_scale_test)
- eval_prog = eval_prog.clone(True)
- exe.run(startup_prog)
- reader = create_reader(cfg.EvalReader)
- # When iterable mode, set set_sample_list_generator(reader, place)
- loader.set_sample_list_generator(reader)
- dataset = cfg['EvalReader']['dataset']
- # eval already exists json file
- if FLAGS.json_eval:
- logger.info(
- "In json_eval mode, PaddleDetection will evaluate json files in "
- "output_eval directly. And proposal.json, bbox.json and mask.json "
- "will be detected by default.")
- json_eval_results(
- cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
- return
- pruned_params = FLAGS.pruned_params
- assert (
- FLAGS.pruned_params is not None
- ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
- pruned_params = FLAGS.pruned_params.strip().split(",")
- logger.info("pruned params: {}".format(pruned_params))
- pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
- logger.info("pruned ratios: {}".format(pruned_ratios))
- assert (len(pruned_params) == len(pruned_ratios)
- ), "The length of pruned params and pruned ratios should be equal."
- assert (pruned_ratios > [0] * len(pruned_ratios) and
- pruned_ratios < [1] * len(pruned_ratios)
- ), "The elements of pruned ratios should be in range (0, 1)."
- base_flops = flops(eval_prog)
- pruner = Pruner()
- eval_prog, _, _ = pruner.prune(
- eval_prog,
- fluid.global_scope(),
- params=pruned_params,
- ratios=pruned_ratios,
- place=place,
- only_graph=False)
- pruned_flops = flops(eval_prog)
- logger.info("pruned FLOPS: {}".format(
- float(base_flops - pruned_flops) / base_flops))
- compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel()
- assert cfg.metric != 'OID', "eval process of OID dataset \
- is not supported."
- if cfg.metric == "WIDERFACE":
- raise ValueError("metric type {} does not support in tools/eval.py, "
- "please use tools/face_eval.py".format(cfg.metric))
- assert cfg.metric in ['COCO', 'VOC'], \
- "unknown metric type {}".format(cfg.metric)
- extra_keys = []
- if cfg.metric == 'COCO':
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg.metric == 'VOC':
- extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
- keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- sub_eval_prog = None
- sub_keys = None
- sub_values = None
- # build sub-program
- if 'Mask' in main_arch and multi_scale_test:
- sub_eval_prog = fluid.Program()
- with fluid.program_guard(sub_eval_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['EvalReader']['inputs_def']
- inputs_def['mask_branch'] = True
- feed_vars, eval_loader = model.build_inputs(**inputs_def)
- sub_fetches = model.eval(
- feed_vars, multi_scale_test, mask_branch=True)
- assert cfg.metric == 'COCO'
- extra_keys = ['im_id', 'im_shape']
- sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
- extra_keys)
- sub_eval_prog = sub_eval_prog.clone(True)
- # load model
- if 'weights' in cfg:
- checkpoint.load_checkpoint(exe, eval_prog, cfg.weights)
- resolution = None
- if 'Mask' in cfg.architecture:
- resolution = model.mask_head.resolution
- results = eval_run(
- exe,
- compile_program,
- loader,
- keys,
- values,
- cls,
- cfg,
- sub_eval_prog,
- sub_keys,
- sub_values,
- resolution=resolution)
- # if map_type not set, use default 11point, only use in VOC eval
- map_type = cfg.map_type if 'map_type' in cfg else '11point'
- eval_results(
- results,
- cfg.metric,
- cfg.num_classes,
- resolution,
- is_bbox_normalized,
- FLAGS.output_eval,
- map_type,
- dataset=dataset)
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--json_eval",
- action='store_true',
- default=False,
- help="Whether to re eval with already exists bbox.json or mask.json")
- parser.add_argument(
- "-f",
- "--output_eval",
- default=None,
- type=str,
- help="Evaluation file directory, default is current directory.")
- parser.add_argument(
- "-p",
- "--pruned_params",
- default=None,
- type=str,
- help="The parameters to be pruned when calculating sensitivities.")
- parser.add_argument(
- "--pruned_ratios",
- default=None,
- type=str,
- help="The ratios pruned iteratively for each parameter when calculating sensitivities."
- )
- FLAGS = parser.parse_args()
- main()
|