123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import logging
- from paddle import fluid
- import paddle.fluid.optimizer as optimizer
- import paddle.fluid.regularizer as regularizer
- from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
- from paddle.fluid.layers.ops import cos
- from ppdet.core.workspace import register, serializable
- __all__ = ['LearningRate', 'OptimizerBuilder']
- logger = logging.getLogger(__name__)
- @serializable
- class PiecewiseDecay(object):
- """
- Multi step learning rate decay
- Args:
- gamma (float | list): decay factor
- milestones (list): steps at which to decay learning rate
- """
- def __init__(self, gamma=[0.1, 0.1], milestones=[60000, 80000],
- values=None):
- super(PiecewiseDecay, self).__init__()
- if type(gamma) is not list:
- self.gamma = []
- for i in range(len(milestones)):
- self.gamma.append(gamma / 10**i)
- else:
- self.gamma = gamma
- self.milestones = milestones
- self.values = values
- def __call__(self, base_lr=None, learning_rate=None):
- if self.values is not None:
- return fluid.layers.piecewise_decay(self.milestones, self.values)
- assert base_lr is not None, "either base LR or values should be provided"
- values = [base_lr]
- for g in self.gamma:
- new_lr = base_lr * g
- values.append(new_lr)
- return fluid.layers.piecewise_decay(self.milestones, values)
- @serializable
- class PolynomialDecay(object):
- """
- Applies polynomial decay to the initial learning rate.
- Args:
- max_iter (int): The learning rate decay steps.
- end_lr (float): End learning rate.
- power (float): Polynomial attenuation coefficient
- """
- def __init__(self, max_iter=180000, end_lr=0.0001, power=1.0):
- super(PolynomialDecay).__init__()
- self.max_iter = max_iter
- self.end_lr = end_lr
- self.power = power
- def __call__(self, base_lr=None, learning_rate=None):
- assert base_lr is not None, "either base LR or values should be provided"
- lr = fluid.layers.polynomial_decay(base_lr, self.max_iter, self.end_lr,
- self.power)
- return lr
- @serializable
- class ExponentialDecay(object):
- """
- Applies exponential decay to the learning rate.
- Args:
- max_iter (int): The learning rate decay steps.
- decay_rate (float): The learning rate decay rate.
- """
- def __init__(self, max_iter, decay_rate):
- super(ExponentialDecay).__init__()
- self.max_iter = max_iter
- self.decay_rate = decay_rate
- def __call__(self, base_lr=None, learning_rate=None):
- assert base_lr is not None, "either base LR or values should be provided"
- lr = fluid.layers.exponential_decay(base_lr, self.max_iter,
- self.decay_rate)
- return lr
- @serializable
- class CosineDecay(object):
- """
- Cosine learning rate decay
- Args:
- max_iters (float): max iterations for the training process.
- if you commbine cosine decay with warmup, it is recommended that
- the max_iter is much larger than the warmup iter
- """
- def __init__(self, max_iters=180000):
- self.max_iters = max_iters
- def __call__(self, base_lr=None, learning_rate=None):
- assert base_lr is not None, "either base LR or values should be provided"
- lr = fluid.layers.cosine_decay(base_lr, 1, self.max_iters)
- return lr
- @serializable
- class CosineDecayWithSkip(object):
- """
- Cosine decay, with explicit support for warm up
- Args:
- total_steps (int): total steps over which to apply the decay
- skip_steps (int): skip some steps at the beginning, e.g., warm up
- """
- def __init__(self, total_steps, skip_steps=None):
- super(CosineDecayWithSkip, self).__init__()
- assert (not skip_steps or skip_steps > 0), \
- "skip steps must be greater than zero"
- assert total_steps > 0, "total step must be greater than zero"
- assert (not skip_steps or skip_steps < total_steps), \
- "skip steps must be smaller than total steps"
- self.total_steps = total_steps
- self.skip_steps = skip_steps
- def __call__(self, base_lr=None, learning_rate=None):
- steps = _decay_step_counter()
- total = self.total_steps
- if self.skip_steps is not None:
- total -= self.skip_steps
- lr = fluid.layers.tensor.create_global_var(
- shape=[1],
- value=base_lr,
- dtype='float32',
- persistable=True,
- name="learning_rate")
- def decay():
- cos_lr = base_lr * .5 * (cos(steps * (math.pi / total)) + 1)
- fluid.layers.tensor.assign(input=cos_lr, output=lr)
- if self.skip_steps is None:
- decay()
- else:
- skipped = steps >= self.skip_steps
- fluid.layers.cond(skipped, decay)
- return lr
- @serializable
- class LinearWarmup(object):
- """
- Warm up learning rate linearly
- Args:
- steps (int): warm up steps
- start_factor (float): initial learning rate factor
- """
- def __init__(self, steps=500, start_factor=1. / 3):
- super(LinearWarmup, self).__init__()
- self.steps = steps
- self.start_factor = start_factor
- def __call__(self, base_lr, learning_rate):
- start_lr = base_lr * self.start_factor
- return fluid.layers.linear_lr_warmup(
- learning_rate=learning_rate,
- warmup_steps=self.steps,
- start_lr=start_lr,
- end_lr=base_lr)
- @register
- class LearningRate(object):
- """
- Learning Rate configuration
- Args:
- base_lr (float): base learning rate
- schedulers (list): learning rate schedulers
- """
- __category__ = 'optim'
- def __init__(self,
- base_lr=0.01,
- schedulers=[PiecewiseDecay(), LinearWarmup()]):
- super(LearningRate, self).__init__()
- self.base_lr = base_lr
- self.schedulers = schedulers
- def __call__(self):
- lr = None
- for sched in self.schedulers:
- lr = sched(self.base_lr, lr)
- return lr
- @register
- class OptimizerBuilder():
- """
- Build optimizer handles
- Args:
- regularizer (object): an `Regularizer` instance
- optimizer (object): an `Optimizer` instance
- """
- __category__ = 'optim'
- def __init__(self,
- clip_grad_by_norm=None,
- regularizer={'type': 'L2',
- 'factor': .0001},
- optimizer={'type': 'Momentum',
- 'momentum': .9}):
- self.clip_grad_by_norm = clip_grad_by_norm
- self.regularizer = regularizer
- self.optimizer = optimizer
- def __call__(self, learning_rate):
- if self.clip_grad_by_norm is not None:
- fluid.clip.set_gradient_clip(
- clip=fluid.clip.GradientClipByGlobalNorm(
- clip_norm=self.clip_grad_by_norm))
- if self.regularizer:
- reg_type = self.regularizer['type'] + 'Decay'
- reg_factor = self.regularizer['factor']
- regularization = getattr(regularizer, reg_type)(reg_factor)
- else:
- regularization = None
- optim_args = self.optimizer.copy()
- optim_type = optim_args['type']
- del optim_args['type']
- op = getattr(optimizer, optim_type)
- return op(learning_rate=learning_rate,
- regularization=regularization,
- **optim_args)
|